File size: 2,831 Bytes
1792652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
tags:
- generated_from_trainer
model-index:
- name: DNADebertaK6_Arabidopsis
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DNADebertaK6_Arabidopsis

This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7194

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 600001
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step   | Validation Loss |
|:-------------:|:------:|:------:|:---------------:|
| 4.6174        | 6.12   | 20000  | 1.9257          |
| 1.8873        | 12.24  | 40000  | 1.8098          |
| 1.8213        | 18.36  | 60000  | 1.7952          |
| 1.8042        | 24.48  | 80000  | 1.7888          |
| 1.7945        | 30.6   | 100000 | 1.7861          |
| 1.7873        | 36.72  | 120000 | 1.7772          |
| 1.782         | 42.84  | 140000 | 1.7757          |
| 1.7761        | 48.96  | 160000 | 1.7632          |
| 1.7714        | 55.08  | 180000 | 1.7685          |
| 1.7677        | 61.2   | 200000 | 1.7568          |
| 1.7637        | 67.32  | 220000 | 1.7570          |
| 1.7585        | 73.44  | 240000 | 1.7442          |
| 1.7554        | 79.56  | 260000 | 1.7556          |
| 1.7515        | 85.68  | 280000 | 1.7505          |
| 1.7483        | 91.8   | 300000 | 1.7463          |
| 1.745         | 97.92  | 320000 | 1.7425          |
| 1.7427        | 104.04 | 340000 | 1.7425          |
| 1.7398        | 110.16 | 360000 | 1.7359          |
| 1.7377        | 116.28 | 380000 | 1.7369          |
| 1.7349        | 122.4  | 400000 | 1.7340          |
| 1.7325        | 128.52 | 420000 | 1.7313          |
| 1.731         | 134.64 | 440000 | 1.7256          |
| 1.7286        | 140.76 | 460000 | 1.7238          |
| 1.7267        | 146.88 | 480000 | 1.7324          |
| 1.7247        | 153.0  | 500000 | 1.7247          |
| 1.7228        | 159.12 | 520000 | 1.7185          |
| 1.7209        | 165.24 | 540000 | 1.7166          |
| 1.7189        | 171.36 | 560000 | 1.7206          |
| 1.7181        | 177.48 | 580000 | 1.7190          |
| 1.7159        | 183.6  | 600000 | 1.7194          |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.2
- Tokenizers 0.12.1