silviacamplani's picture
Training in progress epoch 6
2eaee98
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: silviacamplani/distilbert-finetuned-dapt-ner-music
    results: []

silviacamplani/distilbert-finetuned-dapt-ner-music

This model is a fine-tuned version of silviacamplani/distilbert-finetuned-dapt-lm-ai on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.7656
  • Validation Loss: 0.8288
  • Train Precision: 0.5590
  • Train Recall: 0.5968
  • Train F1: 0.5773
  • Train Accuracy: 0.7761
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
2.5668 1.9780 0.0 0.0 0.0 0.5482 0
1.7189 1.4888 0.1152 0.0396 0.0589 0.5905 1
1.3060 1.2236 0.3797 0.3564 0.3677 0.6839 2
1.0982 1.0637 0.4716 0.4635 0.4675 0.7155 3
0.9450 0.9504 0.5176 0.5167 0.5171 0.7385 4
0.8398 0.8775 0.5474 0.5671 0.5570 0.7579 5
0.7656 0.8288 0.5590 0.5968 0.5773 0.7761 6

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.6.4
  • Datasets 2.1.0
  • Tokenizers 0.12.1