metadata
license: apache-2.0
tags:
- merge
- mergekit
- mistral
- SanjiWatsuki/Silicon-Maid-7B
- senseable/WestLake-7B-v2
base_model:
- SanjiWatsuki/Silicon-Maid-7B
- senseable/WestLake-7B-v2
model-index:
- name: RolePlayLake-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.56
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.42
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.55
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.38
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.27
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.05
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
RolePlayLake-7B
RolePlayLake-7B is a merge of the following models :
In my current testing RolePlayLake is Better than Silicon_Maid in RP and More Uncensored Than WestLake
I would try to only merge Uncensored Models with Baising towards Chat rather than Instruct
🧩 Configuration
slices:
- sources:
- model: SanjiWatsuki/Silicon-Maid-7B
layer_range: [0, 32]
- model: senseable/WestLake-7B-v2
layer_range: [0, 32]
merge_method: slerp
base_model: senseable/WestLake-7B-v2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "fhai50032/RolePlayLake-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Why I Merged WestLake and Silicon Maid
Merged WestLake and Silicon Maid for a unique blend:
- EQ-Bench Dominance: WestLake's 79.75 EQ-Bench score. (Maybe Contaminated)
- Charm and Role-Play: Silicon's explicit charm and WestLake's role-play prowess.
- Config Synergy: Supports lots of prompt format out of the gate and has a very nice synergy
Result: RolePlayLake-7B, a linguistic fusion with EQ-Bench supremacy and captivating role-play potential.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.54 |
AI2 Reasoning Challenge (25-Shot) | 70.56 |
HellaSwag (10-Shot) | 87.42 |
MMLU (5-Shot) | 64.55 |
TruthfulQA (0-shot) | 64.38 |
Winogrande (5-shot) | 83.27 |
GSM8k (5-shot) | 65.05 |