File size: 1,964 Bytes
90a8ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- itihasa
metrics:
- bleu
model-index:
- name: my_sanskrit_model
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: itihasa
      type: itihasa
      config: Itihasa
      split: train
      args: Itihasa
    metrics:
    - name: Bleu
      type: bleu
      value: 0.2607
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_sanskrit_model

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the itihasa dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5101
- Bleu: 0.2607
- Gen Len: 18.9973

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu   | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 3.9557        | 1.0   | 4698  | 3.7191          | 0.3291 | 18.9973 |
| 3.8243        | 2.0   | 9396  | 3.6068          | 0.2728 | 18.9973 |
| 3.7562        | 3.0   | 14094 | 3.5503          | 0.2911 | 18.9973 |
| 3.7306        | 4.0   | 18792 | 3.5207          | 0.2404 | 18.9973 |
| 3.7003        | 5.0   | 23490 | 3.5101          | 0.2607 | 18.9973 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2