File size: 1,989 Bytes
e0596ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: Bio_ClinicalBERT-finetuned-medicalcondition
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bio_ClinicalBERT-finetuned-medicalcondition
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7201
- F1 Score: 0.8254
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.8002 | 1.0 | 1772 | 0.6327 | 0.7759 |
| 0.5933 | 2.0 | 3544 | 0.5906 | 0.7934 |
| 0.5015 | 3.0 | 5316 | 0.5768 | 0.8033 |
| 0.4265 | 4.0 | 7088 | 0.5792 | 0.8099 |
| 0.3698 | 5.0 | 8860 | 0.6030 | 0.8109 |
| 0.3229 | 6.0 | 10632 | 0.6366 | 0.8167 |
| 0.2907 | 7.0 | 12404 | 0.6671 | 0.8198 |
| 0.2649 | 8.0 | 14176 | 0.6850 | 0.8237 |
| 0.2477 | 9.0 | 15948 | 0.7072 | 0.8247 |
| 0.2348 | 10.0 | 17720 | 0.7201 | 0.8254 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|