File size: 2,240 Bytes
8353dfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- gem
model_index:
- name: BART-large-commongen
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: gem
type: gem
args: common_gen
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BART-large-commongen
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the gem dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1409
- Spice: 0.4009
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 6317
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spice |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 10.1086 | 0.05 | 100 | 4.9804 | 0.3736 |
| 4.4168 | 0.09 | 200 | 2.4402 | 0.4079 |
| 1.8158 | 0.14 | 300 | 1.1096 | 0.4258 |
| 1.1723 | 0.19 | 400 | 1.0845 | 0.4086 |
| 1.0894 | 0.24 | 500 | 1.0727 | 0.423 |
| 1.0949 | 0.28 | 600 | 1.0889 | 0.4224 |
| 1.0773 | 0.33 | 700 | 1.0977 | 0.4201 |
| 1.0708 | 0.38 | 800 | 1.1157 | 0.4213 |
| 1.0663 | 0.43 | 900 | 1.1798 | 0.421 |
| 1.0985 | 0.47 | 1000 | 1.1611 | 0.4025 |
| 1.0561 | 0.52 | 1100 | 1.1048 | 0.421 |
| 1.0594 | 0.57 | 1200 | 1.2044 | 0.3626 |
| 1.0689 | 0.62 | 1300 | 1.1409 | 0.4009 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.1.dev0
- Tokenizers 0.10.3
|