File size: 6,343 Bytes
434b57f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import functools
from typing import Tuple

import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax import serialization
from jax import lax


class SobelPerceptionNet(nn.Module):
    @nn.compact
    def __call__(self, x):
        # x shape - BHWC

        num_channels = x.shape[-1]

        # 2D sobel kernels - IOHW layout

        x_sobel_kernel = jnp.zeros(
            (num_channels, num_channels, 3, 3), dtype=jnp.float32
        )
        x_sobel_kernel += (
            jnp.array([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]])[
                jnp.newaxis, jnp.newaxis, :, :
            ]
            / 8.0
        )

        y_sobel_kernel = jnp.zeros(
            (num_channels, num_channels, 3, 3), dtype=jnp.float32
        )
        y_sobel_kernel += (
            jnp.array([[-1.0, -2.0, -1.0], [0.0, 0.0, 0.0], [1.0, 2.0, 1.0]])[
                jnp.newaxis, jnp.newaxis, :, :
            ]
            / 8.0
        )
        x = jnp.transpose(x, [0, 3, 1, 2])  # N C H W

        x_out = lax.conv(
            x,  # lhs = NCHW image tensor
            x_sobel_kernel,  # rhs = OIHW conv kernel tensor
            (1, 1),  # window strides
            "SAME",
        )  # padding mode

        y_out = lax.conv(
            x,  # lhs = NCHW image tensor
            y_sobel_kernel,  # rhs = OIHW conv kernel tensor
            (1, 1),  # window strides
            "SAME",
        )  # padding mode

        out = jnp.concatenate([x, x_out, y_out], axis=1)
        return jnp.transpose(out, [0, 2, 3, 1])  # N H W C


class UpdateNet(nn.Module):

    num_channels: int

    @nn.compact
    def __call__(self, x):
        update_layer_1 = nn.Conv(
            features=64, kernel_size=(1, 1), strides=1, padding="VALID"
        )
        update_layer_2 = nn.Conv(
            features=64, kernel_size=(1, 1), strides=1, padding="VALID"
        )
        update_layer_3 = nn.Conv(
            features=self.num_channels,
            kernel_size=(1, 1),
            strides=1,
            padding="VALID",
            kernel_init=jax.nn.initializers.zeros,
            use_bias=False,
        )
        x = update_layer_1(x)
        x = nn.relu(x)
        x = update_layer_2(x)
        x = nn.relu(x)
        x = update_layer_3(x)
        return x


class TrainablePerception(nn.Module):
    num_channels: int

    @nn.compact
    def __call__(self, x):
        out = nn.Conv(
            features=self.num_channels * 3,
            kernel_size=(3, 3),
            use_bias=False,
            feature_group_count=self.num_channels,
        )(x)
        return out


@functools.partial(jax.jit, static_argnames=("apply_fn", "num_steps"))
def nca_multi_step(apply_fn, params, current_state: jnp.array, rng, num_steps: int):
    def forward(carry, inp):
        carry = apply_fn({"params": params}, carry, rng)
        return carry, carry

    x, outs = jax.lax.scan(forward, current_state, None, length=num_steps)
    return x, outs


class NCA(nn.Module):
    num_hidden_channels: int
    num_target_channels: int = 3
    alpha_living_threshold: float = 0.1
    cell_fire_rate: float = 1.0
    trainable_perception: bool = False
    alpha: float = 1.0

    """
        num_hidden_channels: Number of hidden channels for each cell to use
        num_target_channels: Number of target channels to be used
        alpha_living_threshold: threshold to determine whether a cell lives or dies
        cell_fire_rate: probability that a cell receives an update per step
        trainable_perception: if true, instead of using sobel filters use a trainable conv net
        alpha: scalar value to be multiplied to updates
    """

    @classmethod
    def create_seed(
        cls,
        num_hidden_channels: int,
        num_target_channels: int = 3,
        shape: Tuple[int] = (48, 48),
        batch_size: int = 1,
    ):
        seed = np.zeros((batch_size, *shape, num_hidden_channels + 3 + 1))
        w, h = seed.shape[1], seed.shape[2]
        seed[:, w // 2, h // 2, 3:] = 1.0
        return seed

    def setup(self):
        num_channels = 3 + self.num_hidden_channels + 1
        if self.trainable_perception:
            self.perception = TrainablePerception(num_channels)
        else:
            self.perception = SobelPerceptionNet()
        self.update_net = UpdateNet(num_channels)

    def alive(self, x, alpha_living_threshold: float):
        return (
            nn.max_pool(
                x[..., 3:4], window_shape=(3, 3), strides=(1, 1), padding="SAME"
            )
            > alpha_living_threshold
        )

    def get_stochastic_update_mask(self, x, rng, cell_fire_rate: float = 1.0):
        return jnp.array(np.random.uniform(size=x[..., :1].shape) <= cell_fire_rate)

    def __call__(self, x, rng):
        pre_life_mask = self.alive(x, self.alpha_living_threshold)

        perception_out = self.perception(x)
        update = self.alpha * jnp.reshape(self.update_net(perception_out), x.shape)

        if self.cell_fire_rate >= 1.0:
            stochastic_update_mask = self.get_stochastic_update_mask(
                x, rng, self.cell_fire_rate
            ).astype(float)
            x = x + update * stochastic_update_mask
        else:
            x = x + update

        post_life_mask = self.alive(x, self.alpha_living_threshold)

        life_mask = pre_life_mask & post_life_mask
        life_mask = life_mask.astype(float)

        return x * life_mask

    def save(self, params, path: str):
        bytes_output = serialization.to_bytes(params)
        with open(path, "wb") as f:
            f.write(bytes_output)

    def load(self, path: str):
        nca_seed = self.create_seed(
            self.num_hidden_channels, self.num_target_channels, batch_size=1
        )
        rng = jax.random.PRNGKey(0)
        init_params = self.init(rng, nca_seed, rng)["params"]
        with open(path, "rb") as f:
            bytes_output = f.read()
        return serialization.from_bytes(init_params, bytes_output)

    def multi_step(self, params, current_state: jnp.array, rng, num_steps: int = 2):
        return nca_multi_step(self.apply, params, current_state, rng, num_steps)

    def to_rgb(self, x: jnp.array):
        rgb, a = x[..., :3], jnp.clip(x[..., 3:4], 0.0, 1.0)
        rgb = jnp.clip(1.0 - a + rgb, 0.0, 1.0)
        return rgb