File size: 1,716 Bytes
8d66d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b8f87
 
8d66d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b8f87
 
8d66d75
c3b8f87
8d66d75
 
c3b8f87
8d66d75
 
 
 
 
c3b8f87
 
 
 
8d66d75
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-cola

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1265
- Matthews Correlation: 0.5127

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.7927953212557118e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 35
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5987        | 1.0   | 2138 | 0.5104          | 0.4477               |
| 0.5073        | 2.0   | 4276 | 0.7684          | 0.4766               |
| 0.3068        | 3.0   | 6414 | 0.9311          | 0.4972               |
| 0.1824        | 4.0   | 8552 | 1.1265          | 0.5127               |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0