File size: 14,319 Bytes
0027a8b |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5fbd4000d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5fbd400160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5fbd4001f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5fbd400280>", "_build": "<function ActorCriticPolicy._build at 0x7f5fbd400310>", "forward": "<function ActorCriticPolicy.forward at 0x7f5fbd4003a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5fbd400430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5fbd4004c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5fbd400550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5fbd4005e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5fbd400670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5fbd400700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5fbd404640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691081823083494785, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADfaVD/cPoQ/WPBLv0+zRL8HDWg/7SEeP+Fp5j7FYIc+i9dDv3WOUT0wj6s/UneFPtNLCj+YyM6/DXb/vmuqtj+8O0W/JX89PzOgVb91O9E+EZ0+v0esvj8vtom+lSn1P8Vybb+IqLi/eamsPutSAT9GhdU+ciGBP/piM7+lpfW9rnwQP2ixjj9B/zw/ZF5ZvYB+Q7+Zk+88smNlP4Oujj5Hw6Y/qvaBP/bm4r4JLmY+TChCv0e6BcAvEwE/8DQtvh+WBz6gA5m+FHQ0vlHXRL0kAIo/unMxP/vHPcDrUgE/t9aiPyJemb8UsHU/vL7fPNpFi75f14M/XxFZP5m3Fr+CnRRASxHPv0WbBT+yowdAugrfP0PIRTmPce2/XjRXvWSrpT+EoY+/7MOoP4kkAsC9K7m/4xZDuxSGf75zCIM+xXJtv7pzMT/7xz3A61IBPywqKD9kajg/URyvvQRwhz7yQ9c/Ce7BvmB7uz6n3ZG+DGBDv3ZMizy5ycE/vmAHPrvJBr/ziSDA0nllvij+vT72shm9Y6rMvo8spT1mju4/pmfKPxCoEL6G5jg/SvcJQCQAij+IqLi/eamsPhlh/b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABkkaq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHB/JPQAAAADZJ/K/AAAAAIujr70AAAAAZjnxPwAAAAAskTg9AAAAAPso7j8AAAAAwWmoPQAAAACFKeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVU1iNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJlhATkAAAAA+hLlvwAAAADcEP89AAAAAAOl6j8AAAAADog+PQAAAADR9vc/AAAAAFtE9jwAAAAAgkfrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoks7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAMpug9AAAAAHL3/L8AAAAA7I3KPQAAAAASo9w/AAAAAP+QOr0AAAAAs83xPwAAAAD657k7AAAAAI3j3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv2Z82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+LqhvQAAAAAYoei/AAAAADhT4DwAAAAAULjkPwAAAADwzZO8AAAAANlR7D8AAAAAwN72vQAAAAAoAwDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQUY/Vy3kSMAWyUTegDjAF0lEdAqaIMeuFHrnV9lChoBkdAlxEP7SApa2gHTegDaAhHQKmjRj94u9R1fZQoaAZHQJVdAA3kxRFoB03oA2gIR0CpqMXvQWvbdX2UKGgGR0CXRIYKIBRyaAdN6ANoCEdAqavAOtnwonV9lChoBkdAhKt8UM5OrWgHTegDaAhHQKmvd4RmK651fZQoaAZHQJNBNhkRSP5oB03oA2gIR0CpsK+pn6EbdX2UKGgGR0CUupXmNipeaAdN6ANoCEdAqbYci6g/T3V9lChoBkdAlxsdSIgvDmgHTegDaAhHQKm5FdLQHA11fZQoaAZHQJKORqGlANZoB03oA2gIR0CpvMNapxWDdX2UKGgGR0CV3i3VkMCtaAdN6ANoCEdAqb35X6qKg3V9lChoBkdAlTzFsYVIqmgHTegDaAhHQKnDfnQID5l1fZQoaAZHQIaOE/KQq7RoB03oA2gIR0Cpxn3KSxJNdX2UKGgGR0CVQsxiobXIaAdN6ANoCEdAqcor238XN3V9lChoBkdAlgnoaDPGAGgHTegDaAhHQKnLZPWxyGV1fZQoaAZHQJRgDmFJxvNoB03oA2gIR0Cp0Nxyn1nNdX2UKGgGR0CVhDqUNayKaAdN6ANoCEdAqdPb/0dzXHV9lChoBkdAkI39oWYWtWgHTegDaAhHQKnXkpLEk0J1fZQoaAZHQJRfQ2m51/5oB03oA2gIR0Cp2MmrKeTWdX2UKGgGR0CTRrS4vvjPaAdN6ANoCEdAqd5S2UjcEnV9lChoBkdAkuo9iYsunWgHTegDaAhHQKnhTwo9cKR1fZQoaAZHQJBqKlVLi/BoB03oA2gIR0Cp5QpH7P6bdX2UKGgGR0CVgP5iVjZtaAdN6ANoCEdAqeZDSofjj3V9lChoBkdAkqMQm/nGKmgHTegDaAhHQKnr8eK8+Rp1fZQoaAZHQJJcCwbEP2BoB03oA2gIR0Cp7wbu2JBPdX2UKGgGR0CVD05mh/RWaAdN6ANoCEdAqfLNfb9IgHV9lChoBkdAlYSv6GgzxmgHTegDaAhHQKn0Cuwosqd1fZQoaAZHQJJivUExIrhoB03oA2gIR0Cp+Z5id8RddX2UKGgGR0CRpod0aIepaAdN6ANoCEdAqfyky1uzhXV9lChoBkdAlq7bVFx4p2gHTegDaAhHQKoAWkGA09B1fZQoaAZHQJSFLCl7+kxoB03oA2gIR0CqAZPMB6rvdX2UKGgGR0CWhaXxOLzgaAdN6ANoCEdAqgcOf29L6HV9lChoBkdAiSM/x+az/2gHTegDaAhHQKoKHpL26Cl1fZQoaAZHQJUTcdRzijtoB03oA2gIR0CqDdoXKr7wdX2UKGgGR0CWkvXcxj8UaAdN6ANoCEdAqg8Xr+o993V9lChoBkdAgtxeLWI42mgHTegDaAhHQKoUqhbnoxJ1fZQoaAZHQJIEvI/7iyZoB03oA2gIR0CqF7cUdq+KdX2UKGgGR0B70onv2GqQaAdN6ANoCEdAqht5gJC0GHV9lChoBkdAi8cN65XlsGgHTegDaAhHQKocrnRLK3d1fZQoaAZHQJkaxlEqlP9oB03oA2gIR0CqIjvHLidbdX2UKGgGR0CWvkeDFqBVaAdN6ANoCEdAqiU9g6U7jnV9lChoBkdAleyrQC0WuWgHTegDaAhHQKoo8OS4e911fZQoaAZHQIKxgaisXBRoB03oA2gIR0CqKivrOZ9edX2UKGgGR0CZH5kRBeHBaAdN6ANoCEdAqi+z37DVIHV9lChoBkdAl1J1spG4JGgHTegDaAhHQKoyuIacZtN1fZQoaAZHQJKmoMCtA9poB03oA2gIR0CqNm/3WWhRdX2UKGgGR0CW1GPPszEaaAdN6ANoCEdAqjevcrRSg3V9lChoBkdAjGOLY5DJEGgHTegDaAhHQKo9OpLEk0J1fZQoaAZHQJTd19RaX8hoB03oA2gIR0CqQDfs/pt8dX2UKGgGR0CQv47oSteVaAdN6ANoCEdAqkPv9LpRoHV9lChoBkdAkYMvWxyGSWgHTegDaAhHQKpFKhRqGlB1fZQoaAZHQJlzgGiYb85oB03oA2gIR0CqSqLylN1ydX2UKGgGR0CVyBSLZSNwaAdN6ANoCEdAqk2divxH5XV9lChoBkdAlX9O7YkE92gHTegDaAhHQKpRUX1rZap1fZQoaAZHQJa3U5hjOLRoB03oA2gIR0CqUoyJj2BbdX2UKGgGR0CWf2hQm/nGaAdN6ANoCEdAqlgLwOOKfnV9lChoBkdAl/lZssQNC2gHTegDaAhHQKpbC3G4qgB1fZQoaAZHQJVKncynDSBoB03oA2gIR0CqXrvzOHFhdX2UKGgGR0CYRR+mWMS9aAdN6ANoCEdAql/7BVMmGHV9lChoBkdAl95RTsIE82gHTegDaAhHQKplbsJIDo11fZQoaAZHQJmVPQKKHfxoB03oA2gIR0CqaGxSxZ+ydX2UKGgGR0CYH3zpHI6saAdN6ANoCEdAqmwwTCcf/3V9lChoBkdAmKl3GS6lL2gHTegDaAhHQKptbgmZ3LV1fZQoaAZHQJYjpR/EwWZoB03oA2gIR0CqcvfMfRu1dX2UKGgGR0CZdyrBTGYKaAdN6ANoCEdAqnX5f+jubHV9lChoBkdAmZWaVMVUM2gHTegDaAhHQKp5p9VFQVN1fZQoaAZHQJlnYyfthNNoB03oA2gIR0Cqet4NZvDQdX2UKGgGR0CRbrr1dxACaAdN6ANoCEdAqoBefZmI03V9lChoBkdAl5vrwBo242gHTegDaAhHQKqDX2h7E511fZQoaAZHQJswLLA57w9oB03oA2gIR0Cqhwl41P30dX2UKGgGR0CYEj0r9VFQaAdN6ANoCEdAqohCMDOkcnV9lChoBkdAltDvH1e0HGgHTegDaAhHQKqNqNOM2m51fZQoaAZHQJbmUpSaVlhoB03oA2gIR0CqkKLa/RE4dX2UKGgGR0CZEbPvrnklaAdN6ANoCEdAqpRKh37k4nV9lChoBkdAlnPqg/Tsp2gHTegDaAhHQKqVfx7zCk51fZQoaAZHQJbcFPJq7AdoB03oA2gIR0Cqmv+WGATadX2UKGgGR0CT6/cQiA2AaAdN6ANoCEdAqp38TURWcXV9lChoBkdAlvVh8UmD2GgHTegDaAhHQKqhqXkYGdJ1fZQoaAZHQJJ8klJHy3FoB03oA2gIR0CqouR02cawdX2UKGgGR0CX3L4BmwqzaAdN6ANoCEdAqqhyKLsKLXV9lChoBkdAmT9jSgGr0mgHTegDaAhHQKqreKE384x1fZQoaAZHQJaiMKLKmsNoB03oA2gIR0Cqry145cTrdX2UKGgGR0CU+QJN0vGqaAdN6ANoCEdAqrBip1ie/nV9lChoBkdAls0UkjX4CmgHTegDaAhHQKq17hMrVe91fZQoaAZHQJLoXxqfvndoB03oA2gIR0CquPCONo8IdX2UKGgGR0CWV7m2sq8UaAdN6ANoCEdAqryeycCo0nV9lChoBkdAlgXbQPZqVWgHTegDaAhHQKq92HARChN1fZQoaAZHQJg18ao/A0toB03oA2gIR0Cqw1vboKUndX2UKGgGR0CWCyZccENfaAdN6ANoCEdAqsZdxlxwQ3V9lChoBkdAmMAr3TNMXmgHTegDaAhHQKrKEUM5OrR1fZQoaAZHQJYHt2nsLORoB03oA2gIR0Cqy1WAXl8xdX2UKGgGR0CXj1qrilzmaAdN6ANoCEdAqtDo9xIatXV9lChoBkdAlMIO717IDGgHTegDaAhHQKrT5fReC051fZQoaAZHQJm1IvduYQdoB03oA2gIR0Cq18Ba9sabdX2UKGgGR0CYRcQlKK51aAdN6ANoCEdAqtj5TCLuQnV9lChoBkdAm0+MzImw7mgHTegDaAhHQKrekADJU5x1fZQoaAZHQJM2EWLxZuBoB03oA2gIR0Cq4ZBvze41dX2UKGgGR0CagQY51eSkaAdN6ANoCEdAquVTwnYxtnV9lChoBkdAl0Wa3mV7hWgHTegDaAhHQKrml2FnIyV1fZQoaAZHQJnbz/0dzXBoB03oA2gIR0Cq7BeDWbw0dX2UKGgGR0CYCPBoVVPvaAdN6ANoCEdAqu8ZhnanJnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |