File size: 2,028 Bytes
b58d89f b68e736 90fafb4 b58d89f 48d3217 b58d89f 48d3217 b58d89f 48d3217 b58d89f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- et
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4623
- Wer: 0.3420
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 72
- eval_batch_size: 72
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 144
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3082 | 12.5 | 500 | 0.3871 | 0.4907 |
| 0.1497 | 25.0 | 1000 | 0.4168 | 0.4278 |
| 0.1243 | 37.5 | 1500 | 0.4446 | 0.4220 |
| 0.0954 | 50.0 | 2000 | 0.4426 | 0.3946 |
| 0.0741 | 62.5 | 2500 | 0.4502 | 0.3800 |
| 0.0533 | 75.0 | 3000 | 0.4618 | 0.3653 |
| 0.0447 | 87.5 | 3500 | 0.4518 | 0.3461 |
| 0.0396 | 100.0 | 4000 | 0.4623 | 0.3420 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
|