File size: 17,715 Bytes
72621ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#!/home/haroon/python_virtual_envs/whisper_fine_tuning/bin/python

from datasets import load_dataset, DatasetDict, Audio
from transformers import (WhisperTokenizer, WhisperFeatureExtractor,
                          WhisperProcessor, WhisperForConditionalGeneration,
                          Seq2SeqTrainingArguments, Seq2SeqTrainer)
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
import torch
from dataclasses import dataclass
from typing import Any, Dict, List, Union
import evaluate

# ## Load Dataset

# Hugging Face Hub:
# [mozilla-foundation/common_voice_11_0]
# (https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0).
common_voice = DatasetDict()
common_voice["train"] = load_dataset("mozilla-foundation/common_voice_11_0",
                                     "hi",
                                     split="train+validation",
                                     token=True)
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_11_0",
                                    "hi",
                                    split="test",
                                    token=True)
print(f'YYY1a {common_voice=}')
common_voice = common_voice.remove_columns([
    "accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"])
print(f'YYY1b {common_voice=}')
print(f'YYY2 {type(common_voice)=}')

# ## Prepare Feature Extractor, Tokenizer and Data
# The ASR pipeline can be de-composed into three stages:
# 1) A feature extractor which pre-processes the raw audio-inputs
# 2) The model which performs the sequence-to-sequence mapping 
# 3) A tokenizer which post-processes the model outputs to text format
# 
# In πŸ€— Transformers, the Whisper model has an associated feature extractor and tokenizer, called
# [WhisperFeatureExtractor]
# (https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperFeatureExtractor)
# and [WhisperTokenizer]
# (https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperTokenizer)
# respectively.

# ### Load WhisperFeatureExtractor
# The Whisper feature extractor performs two operations:
# 1. Pads / truncates the audio inputs to 30s: any audio inputs shorter than 30s are padded to 30s
# with silence (zeros), and those longer that 30s are truncated to 30s.
# 2. Converts the audio inputs to log-Mel spectrogram input features, a visual representation of the
# audio and the form of the input expected by the Whisper model.

# We'll load the feature extractor from the pre-trained checkpoint with the default values:
feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small")

# ### Load WhisperTokenizer
# The Whisper model outputs a sequence of token ids.
# The tokenizer maps each of these token ids to their corresponding text string.
# For Hindi, we can load the pre-trained tokenizer and use it for fine-tuning without any
# further modifications.
# We simply have to specify the target language and the task.
# These arguments inform the tokenizer to prefix the language and task tokens to the start of encoded
# label sequences:
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small",
                                             language="Hindi", task="transcribe")

# ### Combine To Create A WhisperProcessor
# To simplify using the feature extractor and tokenizer, we can wrap both into a single
# `WhisperProcessor` class. This processor object inherits from the `WhisperFeatureExtractor`
# and `WhisperProcessor`, and can be used on the audio inputs and model predictions as required.
# In doing so, we only need to keep track of two objects during training: 
# the `processor` and the `model`:
processor = WhisperProcessor.from_pretrained("openai/whisper-small",
                                             language="Hindi", task="transcribe")

# ### Prepare Data
# Let's print the first example of the Common Voice dataset to see what form the data is in:
print(common_voice["train"][0])
'''
In [9]: print(common_voice["train"][0].keys())
common_voice["train"][0] --> keys: 'audio', 'sentence'
common_voice["train"][0]['audio'] -> keys: 'path': str, 'array': list(float), 'sampling_rate': int
common_voice["train"][0]['sentence'] -> text
'''

# Since our input audio is sampled at 48kHz, we need to downsample it to 16kHz prior to passing
# it to the Whisper feature extractor, 16kHz being the sampling rate expected by the Whisper model.
# We'll set the audio inputs to the correct sampling rate using dataset's
# [`cast_column`]
# (https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=cast_column#datasets.DatasetDict.cast_column)
# method.
# This operation does not change the audio in-place, but rather signals to `datasets` to resample
# audio samples on the fly the first time that they are loaded:
common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))

# Re-loading the first audio sample in the Common Voice dataset will resample it to the
# desired sampling rate:
print(common_voice["train"][0])

# We'll define our pre-processing strategy. We advise that you **do not** lower-case the transcriptions
# or remove punctuation unless mixing different datasets.
# This will enable you to fine-tune Whisper models that can predict punctuation and casing.
# Later, you will see how we can evaluate the predictions without punctuation or casing, so that
# the models benefit from the WER improvement obtained by normalising the transcriptions while
# still predicting fully formatted transcriptions.
do_lower_case = False
do_remove_punctuation = False
normalizer = BasicTextNormalizer()

# Now we can write a function to prepare our data ready for the model:
# 1. We load and resample the audio data by calling `batch["audio"]`.
# As explained above, πŸ€— Datasets performs any necessary resampling operations on the fly.
# 2. We use the feature extractor to compute the log-Mel spectrogram input features from our
# 1-dimensional audio array.
# 3. We perform any optional pre-processing (lower-case or remove punctuation).
# 4. We encode the transcriptions to label ids through the use of the tokenizer.


def prepare_dataset(batch):
    # load and (possibly) resample audio data to 16kHz
    audio = batch["audio"]

    # compute log-Mel input features from input audio array 
    batch["input_features"] = processor.feature_extractor(
        audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
    # compute input length of audio sample in seconds
    batch["input_length"] = len(audio["array"]) / audio["sampling_rate"]
    
    # optional pre-processing steps
    transcription = batch["sentence"]
    if do_lower_case:
        transcription = transcription.lower()
    if do_remove_punctuation:
        transcription = normalizer(transcription).strip()

    # encode target text to label ids
    batch["labels"] = processor.tokenizer(transcription).input_ids
    return batch


# We can apply the data preparation function to all of our training examples using dataset's
# `.map` method.
# The argument `num_proc` specifies how many CPU cores to use. Setting `num_proc` > 1 will
# enable multiprocessing. If the `.map` method hangs with multiprocessing, set `num_proc=1`
# and process the dataset sequentially.
common_voice = common_voice.map(prepare_dataset,
                                remove_columns=common_voice.column_names["train"],
                                num_proc=2)

# Finally, we filter any training data with audio samples longer than 30s.
# These samples would otherwise be truncated by the Whisper feature-extractor which could affect
# the stability of training.
# We define a function that returns `True` for samples that are less than 30s, and `False` for
# those that are longer:
max_input_length = 30.0


def is_audio_in_length_range(length):
    return length < max_input_length


# We apply our filter function to all samples of our training dataset through πŸ€— Datasets'
# `.filter` method:
common_voice["train"] = common_voice["train"].filter(
    is_audio_in_length_range,
    input_columns=["input_length"],
)

# ## Training and Evaluation
# Now that we've prepared our data, we're ready to dive into the training pipeline.
# The [πŸ€— Trainer]
# (https://huggingface.co/transformers/master/main_classes/trainer.html?highlight=trainer)
# will do much of the heavy lifting for us. All we have to do is:
# - Define a data collator: the data collator takes our pre-processed data and prepares PyTorch
# tensors ready for the model.
# - Evaluation metrics: during evaluation, we want to evaluate the model using the
# [word error rate (WER)] (https://huggingface.co/metrics/wer) metric.
# We need to define a `compute_metrics` function that handles this computation.
# - Load a pre-trained checkpoint: we need to load a pre-trained checkpoint and configure it correctly
# for training.
# - Define the training configuration: this will be used by the πŸ€— Trainer to define the training
# schedule.
# Once we've fine-tuned the model, we will evaluate it on the test data to verify that we have
# correctly trained it to transcribe speech in Hindi.

# ### Define a Data Collator
# The data collator for a sequence-to-sequence speech model is unique in the sense that it treats
# the `input_features` and `labels` independently: the `input_features` must be handled by the
# feature extractor and the `labels` by the tokenizer.
# The `input_features` are already padded to 30s and converted to a log-Mel spectrogram of fixed
# dimension by action of the feature extractor, so all we have to do is convert the `input_features`
# to batched PyTorch tensors.
# We do this using the feature extractor's `.pad` method with `return_tensors=pt`.
# The `labels` on the other hand are un-padded. We first pad the sequences to the maximum length
# in the batch using the tokenizer's `.pad` method. The padding tokens are then replaced by `-100`
# so that these tokens are **not** taken into account when computing the loss.
# We then cut the BOS token from the start of the label sequence as we append it later during training.
# We can leverage the `WhisperProcessor` we defined earlier to perform both the feature extractor
# and the tokenizer operations:


@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
    processor: Any

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]])\
            -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need different
        # padding methods.
        # First treat the audio inputs by simply returning torch tensors.
        input_features = [{"input_features": feature["input_features"]} for feature in features]
        batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")

        # get the tokenized label sequences
        label_features = [{"input_ids": feature["labels"]} for feature in features]
        # pad the labels to max length
        labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")

        # replace padding with -100 to ignore loss correctly
        labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

        # if bos token is appended in previous tokenization step, cut bos token here as it
        # gets appended later.
        if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():
            labels = labels[:, 1:]
        batch["labels"] = labels
        return batch


# Let's initialise the data collator we've just defined:
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)

# ### Evaluation Metrics
# We'll use the word error rate (WER) metric, the 'de-facto' metric for assessing ASR systems.
# For more information, refer to the WER
# [docs] (https://huggingface.co/metrics/wer).
# We'll load the WER metric from πŸ€— Evaluate:
metric = evaluate.load("wer")

# We then simply have to define a function that takes our model predictions and returns the WER metric.
# This function, called `compute_metrics`, first replaces `-100` with the `pad_token_id` in the
# `label_ids` (undoing the step we applied in the data collator to ignore padded tokens correctly in
# the loss).
# It then decodes the predicted and label ids to strings. Finally, it computes the WER between the
# predictions and reference labels.
# Here, we have the option of evaluating with the 'normalised' transcriptions and predictions.
# We recommend you set this to `True` to benefit from the WER improvement obtained by normalising
# the transcriptions.

# Evaluate with the 'normalised' WER
do_normalize_eval = True


def compute_metrics(pred):
    pred_ids = pred.predictions
    label_ids = pred.label_ids

    # replace -100 with the pad_token_id
    label_ids[label_ids == -100] = processor.tokenizer.pad_token_id

    # we do not want to group tokens when computing the metrics
    pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
    label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)
    if do_normalize_eval:
        pred_str = [normalizer(pred) for pred in pred_str]
        label_str = [normalizer(label) for label in label_str]
    wer = 100 * metric.compute(predictions=pred_str, references=label_str)
    return {"wer": wer}


# ### Load a Pre-Trained Checkpoint
# Now let's load the pre-trained Whisper `small` checkpoint. Again, this is trivial through
# use of πŸ€— Transformers!
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
# define your language of choice here
model.generation_config.language = "hi"

# Override generation arguments - no tokens are forced as decoder outputs
# (see [`forced_decoder_ids`]
# (https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.forced_decoder_ids)),
# no tokens are suppressed during generation
# (see [`suppress_tokens`]
# (https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.suppress_tokens)).
# Set `use_cache` to False since we're using gradient checkpointing, and the two are incompatible:
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
model.config.use_cache = False

# ### Define the Training Configuration
# In the final step, we define all the parameters related to training.
# For more detail on the training arguments, refer to the Seq2SeqTrainingArguments
# [docs]
# (https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments).
training_args = Seq2SeqTrainingArguments(
    output_dir="./",
    per_device_train_batch_size=8,
    gradient_accumulation_steps=8,  # increase by 2x for every 2x decrease in batch size
    learning_rate=1e-5,
    warmup_steps=500,
    max_steps=5000,
    gradient_checkpointing=True,
    fp16=True,
    evaluation_strategy="steps",
    per_device_eval_batch_size=4,
    predict_with_generate=True,
    generation_max_length=225,
    save_steps=1000,
    eval_steps=1000,
    logging_steps=25,
    report_to=["tensorboard"],
    load_best_model_at_end=True,
    metric_for_best_model="wer",
    greater_is_better=False,
    push_to_hub=True,
)

# **Note**: if one does not want to upload the model checkpoints to the Hub, set `push_to_hub=False`.

# We can forward the training arguments to the πŸ€— Trainer along with our model, dataset, data collator
# and `compute_metrics` function:

trainer = Seq2SeqTrainer(
    args=training_args,
    model=model,
    train_dataset=common_voice["train"],
    eval_dataset=common_voice["test"],
    data_collator=data_collator,
    compute_metrics=compute_metrics,
    tokenizer=processor.feature_extractor,
)

# We'll save the processor object once before starting training. Since the processor is not trainable,
# it won't change over the course of training:
processor.save_pretrained(training_args.output_dir)

# ### Training
# Training will take approximately 5-10 hours depending on your GPU. The peak GPU memory for the
# given training configuration is approximately 36GB.
# Depending on your GPU, it is possible that you will encounter a CUDA `"out-of-memory"` error when
# you launch training. In this case, you can reduce the `per_device_train_batch_size` incrementally
# by factors of 2 and employ [`gradient_accumulation_steps`]
# (https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments.gradient_accumulation_steps)
# to compensate.

# To launch training, simply execute:
trainer.train()

# We can label our checkpoint with the `whisper-event` tag on push by setting the appropriate
# keyword arguments (kwargs):
kwargs = {
    "dataset_tags": "mozilla-foundation/common_voice_11_0",
    "dataset": "Common Voice 11.0",  # a 'pretty' name for the training dataset
    "language": "hi",
    "model_name": "Whisper Small Hi - Sanchit Gandhi",  # a 'pretty' name for your model
    "finetuned_from": "openai/whisper-small",
    "tasks": "automatic-speech-recognition",
    "tags": "whisper-event",
}

# The training results can now be uploaded to the Hub. To do so, execute the `push_to_hub`
# command and save the preprocessor object we created:
trainer.push_to_hub(**kwargs)

# ## Closing Remarks
# If you're interested in fine-tuning other Transformers models, both for English and multilingual ASR,
# be sure to check out the examples scripts at
# [examples/pytorch/speech-recognition]
# (https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition).