File size: 13,669 Bytes
058862e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x799a60cb1510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x799a60cb15a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x799a60cb1630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x799a60cb16c0>", "_build": "<function ActorCriticPolicy._build at 0x799a60cb1750>", "forward": "<function ActorCriticPolicy.forward at 0x799a60cb17e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x799a60cb1870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x799a60cb1900>", "_predict": "<function ActorCriticPolicy._predict at 0x799a60cb1990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x799a60cb1a20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x799a60cb1ab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x799a60cb1b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x799a615cde00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705001702078246780, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJot5L2PAUY+a242PsBBrr51SSC9c6EuPAAAAAAAAAAAAA+uvSEazj1Fu1Y+fzo5voXttbzkm689AAAAAAAAAABmGqs91wQCu7+ro7sWJI482FLnO/0pdr0AAIA/AACAPzOikD3f2fE8/B+RPooiBL6eY6I9XR74OwAAAAAAAAAADQn5vde9CbvAVRiyUOyLMBsHATxpv7YzAACAPwAAgD8zX3m84cyfuq7P77o3rty1H5pYup0kCjoAAIA/AACAPzMjULu9KVI/+HjdvcYjBb+uo2k8ug4HvAAAAAAAAAAAM4O0O6Bsgz6j/p++N4bpvo9IML5e6uW9AAAAAAAAAABNgso9wxVoutYePr3uINC4H3VnO0DQPDgAAAAAAACAP5qN4bvfYrU/sj8yvqcB6zxWoAA8ArgfPQAAAAAAAAAAwIVivvuamT4z0mo+1immvrSurr3hNKY9AAAAAAAAAAAz3i291jyaPxM3Wb73hx+/p4Y+O8jnWzwAAAAAAAAAABpFIj2bmuK8lvDivV6s8bwv3BI+9umFPgAAgD8AAIA/xi0jvhP7Hz+d5568xXPNvnML6r0B8sI8AAAAAAAAAADNhHQ7Bfyquxtc6DuDG108ubH/PDSaPr0AAIA/AACAP7OW2D0e8Ks/qFP2Po/qo77CpzE+GmalPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3XK8L8aXOMAWyUS9WMAXSUR0CfXCgDifg8dX2UKGgGR0BSDE1ZTyavaAdLxGgIR0CfXJiPyTY/dX2UKGgGR0Bx1HYe1a4daAdNBQFoCEdAn13BhYvFnHV9lChoBkdAcu4/iYLLIWgHTREBaAhHQJ9eYaOxSpB1fZQoaAZHQHLbJpztCzFoB0v3aAhHQJ9gECkoF3Z1fZQoaAZHQG/HMXzlLe1oB0v6aAhHQJ9gJpyp71J1fZQoaAZHQHKCcLjPv8ZoB0vVaAhHQJ9gNDF6zE91fZQoaAZHQHD7gx33YcxoB0vQaAhHQJ9gSHh0heR1fZQoaAZHQHDnbUb1h9doB0vWaAhHQJ9g0593KSx1fZQoaAZHQG/jZe7cwg1oB00mAWgIR0CfYQMspXp4dX2UKGgGR0By4MCW/rSmaAdL7GgIR0CfYZKhtcfOdX2UKGgGR0BylHriVB2PaAdL72gIR0CfYkzS1E3LdX2UKGgGR0BwOEv+OwPiaAdL82gIR0CfYlx8D0UXdX2UKGgGR0BzFJrRBu4xaAdL8mgIR0CfYuWv8qFzdX2UKGgGR0ByboTpPhybaAdL8mgIR0CfYvf/WDpUdX2UKGgGR0BzrB+LFXJYaAdL9GgIR0CfY+iI+GGmdX2UKGgGR0BxNhlGwzLwaAdLxGgIR0CfZGRWcSXddX2UKGgGR0BxwZBgNPP+aAdNBwFoCEdAn2UcDr7fpHV9lChoBkdAcW5MN+b3GmgHTQ4BaAhHQJ9n+AH3UQV1fZQoaAZHQHDw5Xp4bCJoB0vjaAhHQJ9pHbcoH9p1fZQoaAZHQHDmxq9GqghoB0v5aAhHQJ9pNKcurZJ1fZQoaAZHQHLDxhH9WIZoB0vNaAhHQJ9p+ViWmgt1fZQoaAZHQHISMFyJbdJoB00IAWgIR0CfagVLzwtrdX2UKGgGR0BvmOhK15SnaAdL/mgIR0CfaoIFNcnmdX2UKGgGR0BxQarHU+cIaAdNHAFoCEdAn2rQkxASnXV9lChoBkdAcbc3NcGC7WgHTRsBaAhHQJ9q5y925hB1fZQoaAZHQHHk1fiPyTZoB0vDaAhHQJ9rc45tFa11fZQoaAZHQHDcs9nscABoB00HAWgIR0Cfa3QeFL39dX2UKGgGR0By3s0+C9RKaAdL92gIR0Cfa5iiItUXdX2UKGgGR0BxhRm6GxlhaAdL6WgIR0Cfa6cC5mROdX2UKGgGR0BxxTF72L5zaAdL7WgIR0Cfa956dDpkdX2UKGgGR0BvqvIXCTEBaAdLzWgIR0CfbD/X5FgEdX2UKGgGR0BwJ2NfgJkYaAdLz2gIR0CfbNaR6nivdX2UKGgGR0BlyGCZnctYaAdN6ANoCEdAn4BVwcYIjXV9lChoBkdAcXNIaLn9vWgHS95oCEdAn4Gwe/5+IHV9lChoBkdAccYp1zQu3GgHTQgBaAhHQJ+CJkwvg3t1fZQoaAZHQHGqx6a9botoB0vSaAhHQJ+CT+NtIkJ1fZQoaAZHQHM9C/sVtXRoB0vzaAhHQJ+CZBcAzYV1fZQoaAZHQG1+SHuZ1FJoB0vHaAhHQJ+CrQTmGM51fZQoaAZHQHAKer6tT1loB0vvaAhHQJ+CzcYZVGV1fZQoaAZHQHGv1hgE2YRoB0vkaAhHQJ+DAep4rz51fZQoaAZHQHLmIhllK9RoB00KAWgIR0Cfg31fmcOLdX2UKGgGR0BvLeevpyIYaAdL6mgIR0Cfg6YwIt17dX2UKGgGR0BxyUL0Bfa6aAdL0mgIR0Cfg7C6H0sfdX2UKGgGR0BxX4nb7CSBaAdNFgFoCEdAn4R5rHlwLnV9lChoBkdAca8okzGgjGgHS/toCEdAn4R4mXw9aHV9lChoBkdAcWm3YcvM82gHTQ4BaAhHQJ+Evz5GjKx1fZQoaAZHQHHw5qh11W9oB00NAWgIR0CfhMFUyYXwdX2UKGgGR0Bw3DdFfAsTaAdL5GgIR0CfhM34Kx9odX2UKGgGR0BwgGhlDneSaAdL2GgIR0CfhgJ2MbWFdX2UKGgGR0BwqkCkoF3ZaAdL02gIR0Cfh2yon8badX2UKGgGR0Bxn22F36hyaAdL7WgIR0Cfh7y+pOvddX2UKGgGR0Byj1xwQ176aAdL7mgIR0CfiF1pj+aSdX2UKGgGR0Bw/Zltj0+UaAdL4mgIR0CfiGNgSeyzdX2UKGgGR0Bv3/k/8l5XaAdL2WgIR0CfiHj4HoovdX2UKGgGR0Bxk07U5MlDaAdLyWgIR0CfiITnaFmGdX2UKGgGR0BKT8YqG1x9aAdLn2gIR0CfiK18stkGdX2UKGgGR0BuN4YBNmDlaAdL/GgIR0CfiM8J2MbWdX2UKGgGR0BxM4vPC2tuaAdL2mgIR0CfiR2rGR3edX2UKGgGR0Bvga1G9YfXaAdL+2gIR0CfiSJC0F8pdX2UKGgGR0BxyFiONo8IaAdLzmgIR0CfiXmiQDFIdX2UKGgGR0BunulZX+2maAdL/GgIR0CfieARChN/dX2UKGgGR0BxYumUGFBZaAdL4mgIR0CfijIn0CiidX2UKGgGR0ByDsKhL5ARaAdNBgFoCEdAn4q75dnkDXV9lChoBkdAcdktsenyeGgHTRABaAhHQJ+LPyFwkxB1fZQoaAZHQHLy0KzAvctoB0vxaAhHQJ+L+B5HEuR1fZQoaAZHQHJJY1YQrc1oB0vlaAhHQJ+NJmHxjKB1fZQoaAZHQHETvu5SWJJoB0vEaAhHQJ+NPZ6D5CZ1fZQoaAZHQHBtaguh9LJoB0vCaAhHQJ+Ni6e5Fw11fZQoaAZHQHB7TqGDcudoB0vZaAhHQJ+Nv7O3UhF1fZQoaAZHQG7jIDoyKvVoB0v9aAhHQJ+OHCfpUxV1fZQoaAZHQHCFyz5XU6RoB0vlaAhHQJ+OLIU8FIN1fZQoaAZHQG9tRekYXO5oB0vWaAhHQJ+OZDneSB91fZQoaAZHQHKjj5oGpuNoB0vzaAhHQJ+OZFtsN2F1fZQoaAZHQHGJ7YwqRU5oB0vGaAhHQJ+OZDD0lJJ1fZQoaAZHQHDztAHE/B5oB0vbaAhHQJ+OgyFfzBh1fZQoaAZHQG8qhX8wYchoB0vMaAhHQJ+PLzxwyZd1fZQoaAZHQHI68fA9FF5oB00SAWgIR0Cfj0zLOiWWdX2UKGgGR0ByIDfCQ9zPaAdLz2gIR0Cfj8S+xnnMdX2UKGgGR0ByOBB+nZTRaAdL3mgIR0CfkLTGYKIBdX2UKGgGR0Bx5zPnjhkzaAdL4WgIR0CfkaREF4cFdX2UKGgGR0Bx6ecmShalaAdNPQFoCEdAn5G5b2USqXV9lChoBkdAcScynDR+jWgHS9FoCEdAn5J7/GVAzHV9lChoBkdAcCN+zdDYy2gHS8VoCEdAn5K/1lGwzXV9lChoBkdAcsG42CNCJGgHS+poCEdAn5M996Tnq3V9lChoBkdATTDoMa0hNmgHS8loCEdAn5OF0gbIcXV9lChoBkdAcZfZZjhDPWgHS9hoCEdAn5OkT6BRRHV9lChoBkdAbUDLW7OE/WgHS9poCEdAn5QHEAHVw3V9lChoBkdAcdblFc6eXmgHS9poCEdAn5RBWo3rEHV9lChoBkdAcNVw+dK/VWgHTQMBaAhHQJ+UUikfs/p1fZQoaAZHQHAVXVoYekpoB0vwaAhHQJ+Ubp/wy7B1fZQoaAZHQHCUYn0Cih5oB0vUaAhHQJ+U/gaWHDd1fZQoaAZHQHHxWE0zj3poB00NAWgIR0CflaTMqz7edX2UKGgGR0Bw8UfcN6PbaAdL+GgIR0CfllqqwQlKdX2UKGgGR0Bu4vp4bCJoaAdL5mgIR0Cfln0SRKYidX2UKGgGR0Bt1HRG+bmVaAdLxWgIR0Cfl7+oLofTdX2UKGgGR0BzC8mJFb3XaAdL7mgIR0Cfl/j0cwQEdX2UKGgGR0BxXlPLxI8RaAdL4mgIR0CfmgomG/N8dX2UKGgGR0BxqQbNr0rcaAdL62gIR0Cfmgr4FiazdX2UKGgGR0BvioXhwVCYaAdL3mgIR0CfmqPyCnP3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}