|
--- |
|
language: |
|
- hi |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_7_0 |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: '' |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4031 |
|
- Wer: 0.6827 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 100.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 5.3156 | 3.4 | 500 | 4.5583 | 1.0 | |
|
| 3.3329 | 6.8 | 1000 | 3.4274 | 1.0001 | |
|
| 2.1275 | 10.2 | 1500 | 1.7221 | 0.8763 | |
|
| 1.5737 | 13.6 | 2000 | 1.4188 | 0.8143 | |
|
| 1.3835 | 17.01 | 2500 | 1.2251 | 0.7447 | |
|
| 1.3247 | 20.41 | 3000 | 1.2827 | 0.7394 | |
|
| 1.231 | 23.81 | 3500 | 1.2216 | 0.7074 | |
|
| 1.1819 | 27.21 | 4000 | 1.2210 | 0.6863 | |
|
| 1.1546 | 30.61 | 4500 | 1.3233 | 0.7308 | |
|
| 1.0902 | 34.01 | 5000 | 1.3251 | 0.7010 | |
|
| 1.0749 | 37.41 | 5500 | 1.3274 | 0.7235 | |
|
| 1.0412 | 40.81 | 6000 | 1.2942 | 0.6856 | |
|
| 1.0064 | 44.22 | 6500 | 1.2581 | 0.6732 | |
|
| 1.0006 | 47.62 | 7000 | 1.2767 | 0.6885 | |
|
| 0.9518 | 51.02 | 7500 | 1.2966 | 0.6925 | |
|
| 0.9514 | 54.42 | 8000 | 1.2981 | 0.7067 | |
|
| 0.9241 | 57.82 | 8500 | 1.3835 | 0.7124 | |
|
| 0.9059 | 61.22 | 9000 | 1.3318 | 0.7083 | |
|
| 0.8906 | 64.62 | 9500 | 1.3640 | 0.6962 | |
|
| 0.8468 | 68.03 | 10000 | 1.4727 | 0.6982 | |
|
| 0.8631 | 71.43 | 10500 | 1.3401 | 0.6809 | |
|
| 0.8154 | 74.83 | 11000 | 1.4124 | 0.6955 | |
|
| 0.7953 | 78.23 | 11500 | 1.4245 | 0.6950 | |
|
| 0.818 | 81.63 | 12000 | 1.3944 | 0.6995 | |
|
| 0.7772 | 85.03 | 12500 | 1.3735 | 0.6785 | |
|
| 0.7857 | 88.43 | 13000 | 1.3696 | 0.6808 | |
|
| 0.7705 | 91.84 | 13500 | 1.4101 | 0.6870 | |
|
| 0.7537 | 95.24 | 14000 | 1.4178 | 0.6832 | |
|
| 0.7734 | 98.64 | 14500 | 1.4027 | 0.6831 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu113 |
|
- Datasets 1.18.1.dev0 |
|
- Tokenizers 0.11.0 |
|
|