shivam's picture
update model card README.md
3384b3c
|
raw
history blame
3.29 kB
metadata
language:
  - hi
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_7_0
  - generated_from_trainer
datasets:
  - common_voice
model-index:
  - name: ''
    results: []

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4031
  • Wer: 0.6827

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.3156 3.4 500 4.5583 1.0
3.3329 6.8 1000 3.4274 1.0001
2.1275 10.2 1500 1.7221 0.8763
1.5737 13.6 2000 1.4188 0.8143
1.3835 17.01 2500 1.2251 0.7447
1.3247 20.41 3000 1.2827 0.7394
1.231 23.81 3500 1.2216 0.7074
1.1819 27.21 4000 1.2210 0.6863
1.1546 30.61 4500 1.3233 0.7308
1.0902 34.01 5000 1.3251 0.7010
1.0749 37.41 5500 1.3274 0.7235
1.0412 40.81 6000 1.2942 0.6856
1.0064 44.22 6500 1.2581 0.6732
1.0006 47.62 7000 1.2767 0.6885
0.9518 51.02 7500 1.2966 0.6925
0.9514 54.42 8000 1.2981 0.7067
0.9241 57.82 8500 1.3835 0.7124
0.9059 61.22 9000 1.3318 0.7083
0.8906 64.62 9500 1.3640 0.6962
0.8468 68.03 10000 1.4727 0.6982
0.8631 71.43 10500 1.3401 0.6809
0.8154 74.83 11000 1.4124 0.6955
0.7953 78.23 11500 1.4245 0.6950
0.818 81.63 12000 1.3944 0.6995
0.7772 85.03 12500 1.3735 0.6785
0.7857 88.43 13000 1.3696 0.6808
0.7705 91.84 13500 1.4101 0.6870
0.7537 95.24 14000 1.4178 0.6832
0.7734 98.64 14500 1.4027 0.6831

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu113
  • Datasets 1.18.1.dev0
  • Tokenizers 0.11.0