File size: 2,234 Bytes
d3514dd 5abb498 d3514dd 7c0ce45 d3514dd 7c0ce45 5abb498 7c0ce45 d3514dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: llama3
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model-index:
- name: experiments
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# experiments
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6596
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7073 | 0.4162 | 50 | 1.5993 |
| 1.4004 | 0.8325 | 100 | 1.4527 |
| 1.3051 | 1.2487 | 150 | 1.4122 |
| 1.2396 | 1.6649 | 200 | 1.3871 |
| 1.2044 | 2.0812 | 250 | 1.3906 |
| 1.1019 | 2.4974 | 300 | 1.3775 |
| 1.2682 | 2.9136 | 350 | 1.3649 |
| 1.1681 | 3.3299 | 400 | 1.4233 |
| 1.1343 | 3.7461 | 450 | 1.4160 |
| 0.7987 | 4.1623 | 500 | 1.4964 |
| 0.8663 | 4.5786 | 550 | 1.5011 |
| 0.7473 | 4.9948 | 600 | 1.4845 |
| 0.7386 | 5.4110 | 650 | 1.5706 |
| 0.61 | 5.8273 | 700 | 1.5695 |
| 0.4689 | 6.2435 | 750 | 1.6596 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 1.13.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1 |