shibing624
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,102 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
license: other
|
7 |
+
license_name: llama3
|
8 |
+
license_link: LICENSE
|
9 |
+
tags:
|
10 |
+
- llama3
|
11 |
+
- chinese
|
12 |
+
- meta
|
13 |
---
|
14 |
+
|
15 |
+
|
16 |
+
# llama-3-8b-instruct-262k-chinese-lora
|
17 |
+
|
18 |
+
|
19 |
+
llama-3-8b-instruct-262k-chinese基于[Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k),使用ORPO方法,在中英文偏好数据集[shibing624/DPO-En-Zh-20k-Preference](https://huggingface.co/datasets/shibing624/DPO-En-Zh-20k-Preference)
|
20 |
+
上微调得到的对话模型。
|
21 |
+
|
22 |
+
模型的部署、训练等方法详见MedicalGPT的GitHub仓库:[https://github.com/shibing624/MedicalGPT](https://github.com/shibing624/MedicalGPT)
|
23 |
+
## Relate models
|
24 |
+
- 完整模型权重:https://huggingface.co/shibing624/llama-3-8b-instruct-262k-chinese
|
25 |
+
- lora权重:https://huggingface.co/shibing624/llama-3-8b-instruct-262k-chinese-lora
|
26 |
+
## 如何使用
|
27 |
+
|
28 |
+
```python
|
29 |
+
import transformers
|
30 |
+
import torch
|
31 |
+
|
32 |
+
model_id = "shibing624/llama-3-8b-instruct-262k-chinese"
|
33 |
+
pipeline = transformers.pipeline(
|
34 |
+
"text-generation",
|
35 |
+
model=model_id,
|
36 |
+
model_kwargs={"torch_dtype": torch.float16},
|
37 |
+
device="cuda",
|
38 |
+
)
|
39 |
+
|
40 |
+
messages = [{"role": "system", "content": ""}]
|
41 |
+
messages.append({"role": "user", "content": "介绍一下机器学习"})
|
42 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
43 |
+
messages,
|
44 |
+
tokenize=False,
|
45 |
+
add_generation_prompt=True
|
46 |
+
)
|
47 |
+
terminators = [
|
48 |
+
pipeline.tokenizer.eos_token_id,
|
49 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
50 |
+
]
|
51 |
+
outputs = pipeline(
|
52 |
+
prompt,
|
53 |
+
max_new_tokens=512,
|
54 |
+
eos_token_id=terminators,
|
55 |
+
do_sample=True,
|
56 |
+
temperature=0.6,
|
57 |
+
top_p=0.9
|
58 |
+
)
|
59 |
+
content = outputs[0]["generated_text"][len(prompt):]
|
60 |
+
print(content)
|
61 |
+
```
|
62 |
+
|
63 |
+
|
64 |
+
## About Llama-3-8B-Instruct-262k
|
65 |
+
Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. To learn more or collaborate on a custom model.
|
66 |
+
|
67 |
+
This model extends LLama-3 8B's context length from 8k to -> 160K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training (< 200M tokens) by appropriately adjusting RoPE theta.
|
68 |
+
|
69 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/hiHWva3CbsrnPvZTp5-lu.png" width="600">
|
70 |
+
|
71 |
+
**Approach:**
|
72 |
+
|
73 |
+
- [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base
|
74 |
+
- NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by a new data-driven RoPE theta optimization technique
|
75 |
+
- Progressive training on increasing context lengths similar to the [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below)
|
76 |
+
|
77 |
+
**Infra:**
|
78 |
+
|
79 |
+
We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 262144 tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster.
|
80 |
+
|
81 |
+
**Data:**
|
82 |
+
|
83 |
+
For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B).
|
84 |
+
|
85 |
+
**Progressive Training Details:**
|
86 |
+
|
87 |
+
| Parameter | 65K | 262K |
|
88 |
+
|-----------------------------|----------------|------------|
|
89 |
+
| Initialize From | LLaMA-3-8B-Inst| 65K |
|
90 |
+
| Sequence Length | 2^16 | 2^18 |
|
91 |
+
| RoPE theta | 15.3 M | 207.1 M |
|
92 |
+
| Batch Size (Tokens / Step) | 2.097 M | 4.192 M |
|
93 |
+
| Steps | 30 | 24 |
|
94 |
+
| Total Tokens | 63 M | 101 M |
|
95 |
+
| Learning Rate | 2.00E-05 | 2.00E-05 |
|
96 |
+
| # GPUs | 32 | 32 |
|
97 |
+
| GPU Type | NVIDIA L40S | NVIDIA L40S|
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|