File size: 1,531 Bytes
c0803a9
 
f30fa68
 
 
 
 
 
c0803a9
 
f30fa68
c0803a9
f30fa68
c0803a9
f30fa68
c0803a9
f30fa68
 
c0803a9
f30fa68
 
 
c0803a9
f30fa68
c0803a9
f30fa68
c0803a9
f30fa68
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
---
library_name: transformers
license: apache-2.0
language:
- en
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
pipeline_tag: image-text-to-text
---

# pretrain_dsg_OLA-VLM-CLIP-ConvNeXT-Llama3-8b Model Card

>Note: This is the pretrained model used for [OLA-VLM-CLIP-ConvNeXT-Llama3-8b](https://huggingface.co/shi-labs/OLA-VLM-CLIP-ConvNeXT-Llama3-8b).

OLA-VLM distills target visual information into the intermediate representations of the LLM  from a set of target encoders. It adopts a predictive embedding optimization approach at selected LLM layers during training to minimize the embedding losses along with the next token prediction (NTP) objective,  resulting in a vision-centric approach to training the Multimodal Large Language Model.

- **GitHub Repo:** [https://github.com/SHI-Labs/OLA-VLM](https://github.com/SHI-Labs/OLA-VLM)
- **Project Page:** [https://praeclarumjj3.github.io/ola_vlm/](https://praeclarumjj3.github.io/ola_vlm/)

<p align="center">
    <img src="https://praeclarumjj3.github.io/ola_vlm/teaser.png" width="90%" class="center"/>
</p>

## Citation

If you found our work useful in your research, please consider starring ⭐ us on [GitHub](https://github.com/SHI-Labs/OLA-VLM) and citing 📚 us in your research!

```
@article{jain2024ola_vlm,
    title={{OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation}},
    author={Jitesh Jain and Zhengyuan Yang and Humphrey Shi and Jianfeng Gao and Jianwei Yang},
    journal={arXiv},
    year={2024}
}
```