File size: 1,531 Bytes
c0803a9 f30fa68 c0803a9 f30fa68 c0803a9 f30fa68 c0803a9 f30fa68 c0803a9 f30fa68 c0803a9 f30fa68 c0803a9 f30fa68 c0803a9 f30fa68 c0803a9 f30fa68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
library_name: transformers
license: apache-2.0
language:
- en
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
pipeline_tag: image-text-to-text
---
# pretrain_dsg_OLA-VLM-CLIP-ConvNeXT-Llama3-8b Model Card
>Note: This is the pretrained model used for [OLA-VLM-CLIP-ConvNeXT-Llama3-8b](https://huggingface.co/shi-labs/OLA-VLM-CLIP-ConvNeXT-Llama3-8b).
OLA-VLM distills target visual information into the intermediate representations of the LLM from a set of target encoders. It adopts a predictive embedding optimization approach at selected LLM layers during training to minimize the embedding losses along with the next token prediction (NTP) objective, resulting in a vision-centric approach to training the Multimodal Large Language Model.
- **GitHub Repo:** [https://github.com/SHI-Labs/OLA-VLM](https://github.com/SHI-Labs/OLA-VLM)
- **Project Page:** [https://praeclarumjj3.github.io/ola_vlm/](https://praeclarumjj3.github.io/ola_vlm/)
<p align="center">
<img src="https://praeclarumjj3.github.io/ola_vlm/teaser.png" width="90%" class="center"/>
</p>
## Citation
If you found our work useful in your research, please consider starring ⭐ us on [GitHub](https://github.com/SHI-Labs/OLA-VLM) and citing 📚 us in your research!
```
@article{jain2024ola_vlm,
title={{OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation}},
author={Jitesh Jain and Zhengyuan Yang and Humphrey Shi and Jianfeng Gao and Jianwei Yang},
journal={arXiv},
year={2024}
}
```
|