metadata
license: mit
datasets:
- shhossain/book-text-classifier
language:
- en
pipeline_tag: text-classification
widget:
- text: >-
Shen Yuanye didn’t expect to go back to Huang Ni’s matter again, this
matter of being killed without finding the murderer, who else could be
beside her.
example_title: Book Text
- text: >-
I am so sorry this is a day late, guys. Unfortunately, my internet was
down so it was out of my control. Its still intermittent but hopefully it
will be fine by next week.
example_title: Normal Text
metrics:
- accuracy
model-index:
- name: shhossain/bert-tiny-book-text-classifier
results:
- task:
type: text-classification
name: Text Classification
dataset:
type: shhossain/book-text-classifier
name: book-text-classifier
split: test
metrics:
- type: accuracy
value: 0.999128
Book Test Classifier
Classify book text (mostly fictional book)
Model Details
Model Description
This model is finetuned on bert-tiny for classifying book text.
- Developed by: shhossain
- Model type: [Bert]
- Language(s) (NLP): [English]
- License: [MIT]
- Finetuned from model [Bert-Tiny]: bert-tiny
Uses
from transformers import pipeline, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('prajjwal1/bert-tiny')
pipe = pipeline('text-classification', model='shhossain/bert-tiny-book-text-classifier')
book_text = """Shen Yuanye didn’t expect to go back to Huang Ni’s matter again, this matter of being killed without finding the murderer, who else could be beside her."""
pipe(book_text) # LABEL_1
>> [{'label': 'LABEL_1', 'score': 0.9998537302017212}]
normal_text = """I am so sorry this is a day late, guys. Unfortunately, my internet was down so it was out of my control. Its still intermittent but hopefully it will be fine by next week. Hopefully the fact that Skye and Pietro are back in form will help make up for it."""
pipe(normal_text) # LABEL_0
>> [{'label': 'LABEL_0', 'score': 0.9984021782875061}]