File size: 5,774 Bytes
e0948eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import sys
import os

current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)

from transformers import PreTrainedModel, PretrainedConfig, AutoConfig
import torch
import numpy as np
from f5_tts.infer.utils_infer import (
    infer_process,
    load_model,
    load_vocoder,
    preprocess_ref_audio_text,
)
from f5_tts.model import DiT
import soundfile as sf
import io
from pydub import AudioSegment, silence
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import os

class INF5Config(PretrainedConfig):
    model_type = "inf5"

    def __init__(self, ckpt_path: str = "checkpoints/model_best.pt", vocab_path: str = "checkpoints/vocab.txt", 
                 speed: float = 1.0, remove_sil: bool = True, **kwargs):
        super().__init__(**kwargs)
        self.ckpt_path = ckpt_path
        self.vocab_path = vocab_path
        self.speed = speed
        self.remove_sil = remove_sil

class INF5Model(PreTrainedModel):
    config_class = INF5Config

    def __init__(self, config):
        super().__init__(config)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        # Load vocoder
        self.vocoder = torch.compile(load_vocoder(vocoder_name="vocos", is_local=False, device=device))

        # Download and load model weights
        # safetensors_path = hf_hub_download(config.name_or_path, filename="model.safetensors")
        # print(f"Loading model weights from {safetensors_path} (safetensors)...")
        # state_dict = load_file(safetensors_path, device=str(device))

        # Download vocab.txt from HF Hub
        vocab_path = hf_hub_download(config.name_or_path, filename="checkpoints/vocab.txt")

        self.ema_model = torch.compile(load_model(
                DiT,
                dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
                mel_spec_type="vocos",
                vocab_file=vocab_path,
                device=device
            )
        )

        # # Load state dict into model
        # self.ema_model.load_state_dict(state_dict, strict=False)

    
    def forward(self, text: str, ref_audio_path: str, ref_text: str):
        """
        Generate speech given a reference audio & text input.
        
        Args:
            text (str): The text to be synthesized.
            ref_audio_path (str): Path to the reference audio file.
            ref_text (str): The reference text.

        Returns:
            np.array: Generated waveform.
        """

        if not os.path.exists(ref_audio_path):
            raise FileNotFoundError(f"Reference audio file {ref_audio_path} not found.")

        # Load reference audio & text
        ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_path, ref_text)

        
        self.ema_model.to(self.device)
        self.vocoder.to(self.device)
        
        # Perform inference
        audio, final_sample_rate, _ = infer_process(
            ref_audio,
            ref_text,
            text,
            self.ema_model,
            self.vocoder,
            mel_spec_type="vocos",
            speed=self.config.speed,
            device=self.device,
        )

        # Convert to pydub format and remove silence if needed
        buffer = io.BytesIO()
        sf.write(buffer, audio, samplerate=24000, format="WAV")
        buffer.seek(0)
        audio_segment = AudioSegment.from_file(buffer, format="wav")

        if self.config.remove_sil:
            non_silent_segs = silence.split_on_silence(
                audio_segment,
                min_silence_len=1000,
                silence_thresh=-50,
                keep_silence=500,
                seek_step=10,
            )
            non_silent_wave = sum(non_silent_segs, AudioSegment.silent(duration=0))
            audio_segment = non_silent_wave

        # Normalize loudness
        target_dBFS = -20.0
        change_in_dBFS = target_dBFS - audio_segment.dBFS
        audio_segment = audio_segment.apply_gain(change_in_dBFS)

        return np.array(audio_segment.get_array_of_samples())



if __name__ == '__main__':
    model = INF5Model(INF5Config(ckpt_path="checkpoints/model_best.pt", vocab_path="checkpoints/vocab.txt"))
    model.save_pretrained("INF5")
    model.config.save_pretrained("INF5")

    import numpy as np
    import soundfile as sf
    from transformers import AutoConfig, AutoModel
    
    AutoConfig.register("inf5", INF5Config)
    AutoModel.register(INF5Config, INF5Model)

    model = AutoModel.from_pretrained("INF5")
    audio = model("नमस्ते! संगीत की तरह जीवन भी खूबसूरत होता है, बस इसे सही ताल में जीना आना चाहिए.", 
                  ref_audio_path="prompts/PAN_F_HAPPY_00001.wav",
                  ref_text="भਹੰਪੀ ਵਿੱਚ ਸਮਾਰਕਾਂ ਦੇ ਭਵਨ ਨਿਰਮਾਣ ਕਲਾ ਦੇ ਵੇਰਵੇ ਗੁੰਝਲਦਾਰ ਅਤੇ ਹੈਰਾਨ ਕਰਨ ਵਾਲੇ ਹਨ, ਜੋ ਮੈਨੂੰ ਖੁਸ਼ ਕਰਦੇ  ਹਨ।")
    
    if audio.dtype == np.int16:
        audio = audio.astype(np.float32) / 32768.0  
    sf.write("samples/namaste.wav", np.array(audio, dtype=np.float32), samplerate=24000)

    from huggingface_hub import HfApi

    repo_id = "svp19/INF5"  # Change to your HF repo

    # Upload model directory to HF
    api = HfApi()
    api.upload_folder(
        folder_path="INF5",
        repo_id=repo_id,
        repo_type="model"
    )
    print(f"Model pushed to https://huggingface.co/{repo_id} 🚀")

    print("Verify Upload")
    from transformers import AutoModel
    model = AutoModel.from_pretrained(repo_id)
    print("Success")