File size: 5,774 Bytes
e0948eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import sys
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from transformers import PreTrainedModel, PretrainedConfig, AutoConfig
import torch
import numpy as np
from f5_tts.infer.utils_infer import (
infer_process,
load_model,
load_vocoder,
preprocess_ref_audio_text,
)
from f5_tts.model import DiT
import soundfile as sf
import io
from pydub import AudioSegment, silence
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import os
class INF5Config(PretrainedConfig):
model_type = "inf5"
def __init__(self, ckpt_path: str = "checkpoints/model_best.pt", vocab_path: str = "checkpoints/vocab.txt",
speed: float = 1.0, remove_sil: bool = True, **kwargs):
super().__init__(**kwargs)
self.ckpt_path = ckpt_path
self.vocab_path = vocab_path
self.speed = speed
self.remove_sil = remove_sil
class INF5Model(PreTrainedModel):
config_class = INF5Config
def __init__(self, config):
super().__init__(config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load vocoder
self.vocoder = torch.compile(load_vocoder(vocoder_name="vocos", is_local=False, device=device))
# Download and load model weights
# safetensors_path = hf_hub_download(config.name_or_path, filename="model.safetensors")
# print(f"Loading model weights from {safetensors_path} (safetensors)...")
# state_dict = load_file(safetensors_path, device=str(device))
# Download vocab.txt from HF Hub
vocab_path = hf_hub_download(config.name_or_path, filename="checkpoints/vocab.txt")
self.ema_model = torch.compile(load_model(
DiT,
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
mel_spec_type="vocos",
vocab_file=vocab_path,
device=device
)
)
# # Load state dict into model
# self.ema_model.load_state_dict(state_dict, strict=False)
def forward(self, text: str, ref_audio_path: str, ref_text: str):
"""
Generate speech given a reference audio & text input.
Args:
text (str): The text to be synthesized.
ref_audio_path (str): Path to the reference audio file.
ref_text (str): The reference text.
Returns:
np.array: Generated waveform.
"""
if not os.path.exists(ref_audio_path):
raise FileNotFoundError(f"Reference audio file {ref_audio_path} not found.")
# Load reference audio & text
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_path, ref_text)
self.ema_model.to(self.device)
self.vocoder.to(self.device)
# Perform inference
audio, final_sample_rate, _ = infer_process(
ref_audio,
ref_text,
text,
self.ema_model,
self.vocoder,
mel_spec_type="vocos",
speed=self.config.speed,
device=self.device,
)
# Convert to pydub format and remove silence if needed
buffer = io.BytesIO()
sf.write(buffer, audio, samplerate=24000, format="WAV")
buffer.seek(0)
audio_segment = AudioSegment.from_file(buffer, format="wav")
if self.config.remove_sil:
non_silent_segs = silence.split_on_silence(
audio_segment,
min_silence_len=1000,
silence_thresh=-50,
keep_silence=500,
seek_step=10,
)
non_silent_wave = sum(non_silent_segs, AudioSegment.silent(duration=0))
audio_segment = non_silent_wave
# Normalize loudness
target_dBFS = -20.0
change_in_dBFS = target_dBFS - audio_segment.dBFS
audio_segment = audio_segment.apply_gain(change_in_dBFS)
return np.array(audio_segment.get_array_of_samples())
if __name__ == '__main__':
model = INF5Model(INF5Config(ckpt_path="checkpoints/model_best.pt", vocab_path="checkpoints/vocab.txt"))
model.save_pretrained("INF5")
model.config.save_pretrained("INF5")
import numpy as np
import soundfile as sf
from transformers import AutoConfig, AutoModel
AutoConfig.register("inf5", INF5Config)
AutoModel.register(INF5Config, INF5Model)
model = AutoModel.from_pretrained("INF5")
audio = model("नमस्ते! संगीत की तरह जीवन भी खूबसूरत होता है, बस इसे सही ताल में जीना आना चाहिए.",
ref_audio_path="prompts/PAN_F_HAPPY_00001.wav",
ref_text="भਹੰਪੀ ਵਿੱਚ ਸਮਾਰਕਾਂ ਦੇ ਭਵਨ ਨਿਰਮਾਣ ਕਲਾ ਦੇ ਵੇਰਵੇ ਗੁੰਝਲਦਾਰ ਅਤੇ ਹੈਰਾਨ ਕਰਨ ਵਾਲੇ ਹਨ, ਜੋ ਮੈਨੂੰ ਖੁਸ਼ ਕਰਦੇ ਹਨ।")
if audio.dtype == np.int16:
audio = audio.astype(np.float32) / 32768.0
sf.write("samples/namaste.wav", np.array(audio, dtype=np.float32), samplerate=24000)
from huggingface_hub import HfApi
repo_id = "svp19/INF5" # Change to your HF repo
# Upload model directory to HF
api = HfApi()
api.upload_folder(
folder_path="INF5",
repo_id=repo_id,
repo_type="model"
)
print(f"Model pushed to https://huggingface.co/{repo_id} 🚀")
print("Verify Upload")
from transformers import AutoModel
model = AutoModel.from_pretrained(repo_id)
print("Success")
|