license: gemma
library_name: transformers
pipeline_tag: text-generation
base_model: google/gemma-2-9b-it
language:
- en
- zh
tags:
- llama-factory
- orpo
Model Summary
Gemma-2-9B-Chinese-Chat is the first instruction-tuned language model built upon google/gemma-2-9b-it for Chinese & English users with various abilities such as roleplaying & tool-using.
Developed by: Shenzhi Wang (王慎执) and Yaowei Zheng (郑耀威)
- License: Gemma License
- Base Model: google/gemma-2-9b-it
- Model Size: 9.24B
- Context length: 8K
1. Introduction
This is the first model specifically fine-tuned for Chinese & English users based on the google/gemma-2-9b-it with a preference dataset with more than 100K preference pairs. The fine-tuning algorithm we employ is ORPO [1].
Compared to the original google/gemma-2-9b-it, our Gemma-2-9B-Chinese-Chat model significantly reduces the issues of "Chinese questions with English answers" and the mixing of Chinese and English in responses, with enhanced performance in roleplay, tool using, and math.
[1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024).
Training framework: LLaMA-Factory.
Training details:
- epochs: 3
- learning rate: 3e-6
- learning rate scheduler type: cosine
- Warmup ratio: 0.1
- cutoff len (i.e. context length): 8192
- orpo beta (i.e. $\lambda$ in the ORPO paper): 0.05
- global batch size: 128
- fine-tuning type: full parameters
- optimizer: paged_adamw_32bit
2. Usage
2.1 Usage of Our BF16 Model
Please upgrade the
transformers
package to ensure it supports Gemma-2 models. The current version we are using is4.42.2
.Use the following Python script to download our BF16 model
from huggingface_hub import snapshot_download
snapshot_download(repo_id="shenzhi-wang/Gemma-2-9B-Chinese-Chat", ignore_patterns=["*.gguf"]) # Download our BF16 model without downloading GGUF models.
- Inference with the BF16 model
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "/Your/Local/Path/to/Gemma-2-9B-Chinese-Chat"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype=dtype,
)
chat = [
{"role": "user", "content": "写一首关于机器学习的诗。"},
]
input_ids = tokenizer.apply_chat_template(
chat, tokenize=True, add_generation_prompt=True, return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=8192,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1] :]
print(tokenizer.decode(response, skip_special_tokens=True))