|
--- |
|
license: gemma |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
base_model: google/gemma-2-27b-it |
|
language: |
|
- en |
|
- zh |
|
tags: |
|
- llama-factory |
|
- orpo |
|
--- |
|
|
|
βοΈβοΈβοΈNOTICE: For optimal performance, we refrain from fine-tuning the model's identity. Thus, inquiries such as "Who are you" or "Who developed you" may yield random responses that are not necessarily accurate. |
|
|
|
|
|
# Updates |
|
|
|
- πππ [Jul 2, 2024] We now introduce Gemma-2-27B-Chinese-Chat, which is **the first instruction-tuned language model built upon [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) for Chinese & English users** with various abilities such as roleplaying & tool-using. |
|
- π₯π₯π₯ We provide various GGUF files (including q4_k_m, q_4_0, q_8_0) at https://huggingface.co/shenzhi-wang/Gemma-2-27B-Chinese-Chat/tree/main/gguf_models. |
|
|
|
# Model Summary |
|
|
|
Gemma-2-27B-Chinese-Chat is **the first instruction-tuned language model built upon [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) for Chinese & English users** with various abilities such as roleplaying & tool-using. |
|
|
|
Developed by: [Shenzhi Wang](https://shenzhi-wang.netlify.app) (ηζ
ζ§) and [Yaowei Zheng](https://github.com/hiyouga) (ιθε¨) |
|
|
|
- License: [Gemma License](https://ai.google.dev/gemma/terms) |
|
- Base Model: [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) |
|
- Model Size: 27.2B |
|
- Context length: 8K |
|
|
|
# 1. Introduction |
|
|
|
This is the first model specifically fine-tuned for Chinese & English users based on the [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) with a preference dataset with more than 100K preference pairs. The fine-tuning algorithm we employ is ORPO [1]. |
|
|
|
**Compared to the original [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it), our Gemma-2-27B-Chinese-Chat model significantly reduces the issues of "Chinese questions with English answers" and the mixing of Chinese and English in responses, with enhanced performance in roleplay, tool-using, and math.** |
|
|
|
[1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024). |
|
|
|
Training framework: [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory). |
|
|
|
Training details: |
|
|
|
- epochs: 3 |
|
- learning rate: 3e-6 |
|
- learning rate scheduler type: cosine |
|
- Warmup ratio: 0.1 |
|
- cutoff len (i.e. context length): 8192 |
|
- orpo beta (i.e. $\lambda$ in the ORPO paper): 0.05 |
|
- global batch size: 128 |
|
- fine-tuning type: full parameters |
|
- optimizer: paged_adamw_32bit |
|
|
|
# 2. Usage |
|
|
|
## 2.1 Usage of Our BF16 Model |
|
|
|
1. Please upgrade the `transformers` package to ensure it supports Gemma-2 models. The current version we are using is `4.42.2`. |
|
|
|
2. Use the following Python script to download our BF16 model |
|
|
|
```python |
|
from huggingface_hub import snapshot_download |
|
snapshot_download(repo_id="shenzhi-wang/Gemma-2-27B-Chinese-Chat", ignore_patterns=["*.gguf"]) # Download our BF16 model without downloading GGUF models. |
|
``` |
|
|
|
3. Inference with the BF16 model |
|
|
|
```python |
|
import torch |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "/Your/Local/Path/to/Gemma-2-27B-Chinese-Chat" |
|
dtype = torch.bfloat16 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="cuda", |
|
torch_dtype=dtype, |
|
) |
|
|
|
chat = [ |
|
{"role": "user", "content": "εδΈι¦ε
³δΊζΊε¨ε¦δΉ ηθ―γ"}, |
|
] |
|
input_ids = tokenizer.apply_chat_template( |
|
chat, tokenize=True, add_generation_prompt=True, return_tensors="pt" |
|
).to(model.device) |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=8192, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
response = outputs[0][input_ids.shape[-1] :] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
``` |
|
|
|
## 2.2 Usage of Our GGUF Models |
|
|
|
1. Download our GGUF models from the [gguf_models folder](https://huggingface.co/shenzhi-wang/Gemma-2-27B-Chinese-Chat/tree/main/gguf_models). |
|
2. Use the GGUF models with [LM Studio](https://lmstudio.ai/) version 0.2.26. |
|
|
|
|