File size: 9,741 Bytes
e9541e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import fam.llm.fast_inference_utils
from fam.llm.fast_inference import TTS as FAMTTS
from fam.llm.inference import Model as FAMModel
from fam.llm.inference import InferenceConfig
from fam.llm.adapters.tilted_encodec import TiltedEncodec
from fam.llm.adapters.flattened_encodec import FlattenedInterleavedEncodec2Codebook
from fam.llm.decoders import EncodecDecoder
from fam.llm.enhancers import get_enhancer
from fam.llm.utils import get_default_dtype, get_device
from fam.llm.fast_model import Transformer
from fam.llm.model import GPT, GPTConfig
from fam.quantiser.text.tokenise import TrainedBPETokeniser
from fam.quantiser.audio.speaker_encoder.model import SpeakerEncoder as FAMSpeakerEncoder
from fam.quantiser.audio.speaker_encoder.model import mel_n_channels, model_hidden_size, model_embedding_size, model_num_layers
import os
from pathlib import Path
from typing import Optional, Union
from json import load, dump
from base64 import b64encode, b64decode
import torch
from torch import nn
from huggingface_hub import snapshot_download, HfFileSystem
from safetensors.torch import load_model, save_model
def convert_to_safetensors(
stage1_path: str,
stage2_path: str,
spk_emb_ckpt_path: str,
precision: torch.dtype,
output_path: str
):
config_second_stage = InferenceConfig(
ckpt_path=stage2_path,
num_samples=1,
seed=0,
device='cpu',
dtype='float16' if precision == torch.float16 else 'bfloat16',
compile=False,
init_from='resume',
output_dir='.',
)
data_adapter_second_stage = TiltedEncodec(end_of_audio_token=512)
stage2_model = Model(config_second_stage, TrainedBPETokeniser, EncodecDecoder, data_adapter_fn=data_adapter_second_stage.decode)
stage2_checkpoint = torch.load(stage2_path, map_location='cpu')
stage2_state_dict = stage2_checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k in stage2_state_dict.keys():
if k.startswith(unwanted_prefix):
stage2_state_dict[k[len(unwanted_prefix) :]] = stage2_state_dict.pop(k)
save_model(stage2_model.model, os.path.join(output_path, 'second_stage.safetensors'))
stage1_model, tokenizer, smodel = fam.llm.fast_inference_utils._load_model(stage1_path, spk_emb_ckpt_path, 'cpu', precision)
tokenizer_info = torch.load(stage1_path, map_location='cpu').get('meta', {}).get('tokenizer', {})
save_model(stage1_model, os.path.join(output_path, 'first_stage.safetensors'))
save_model(smodel, os.path.join(output_path, 'speaker_encoder.safetensors'))
with open(os.path.join(output_path, 'config.json'), 'w') as f:
tokenizer_info['mergeable_ranks'] = {b64encode(k).decode('ascii'): v for k, v in tokenizer_info['mergeable_ranks'].items()}
stage2_checkpoint['meta']['tokenizer']['mergeable_ranks'] = {b64encode(k).decode('ascii'): v for k, v in stage2_checkpoint['meta']['tokenizer']['mergeable_ranks'].items()}
dump({
'model_name': 'metavoice-1B-v0.1',
'stage1': {
'tokenizer_info': tokenizer_info
},
'stage2': {
'config': stage2_checkpoint['config'],
'meta': stage2_checkpoint['meta'],
'model_args': stage2_checkpoint['model_args']
}
}, f)
class SpeakerEncoder(FAMSpeakerEncoder):
def __init__(
self,
weights_fpath: str,
device: Optional[Union[str, torch.device]] = None,
verbose: bool = True,
eval: bool = False,
):
nn.Module.__init__(self)
# Define the network
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
self.relu = nn.ReLU()
# Get the target device
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
elif isinstance(device, str):
device = torch.device(device)
self.device = device
weights_fpath = str(weights_fpath)
if weights_fpath.endswith('.safetensors'):
load_model(self, weights_fpath)
else:
checkpoint = torch.load(weights_fpath, map_location='cpu')
self.load_state_dict(checkpoint['model_state'], strict=False)
self.to(device)
if eval:
self.eval()
def load_safetensors_model(checkpoint_path, spk_emb_ckpt_path, device, precision):
##### MODEL
with torch.device(device):
model = Transformer.from_name('metavoice-1B')
load_model(model, checkpoint_path)
model = model.to(device=device, dtype=precision)
###### TOKENIZER
with open(f'{os.path.dirname(checkpoint_path)}/config.json', 'r') as f:
config = load(f)['stage1']
config['tokenizer_info']['mergeable_ranks'] = {b64decode(k): v for k, v in config['tokenizer_info']['mergeable_ranks'].items()}
tokenizer_info = config['tokenizer_info']
tokenizer = TrainedBPETokeniser(**tokenizer_info)
###### SPEAKER EMBEDDER
smodel = SpeakerEncoder(
weights_fpath=spk_emb_ckpt_path,
device=device,
eval=True,
verbose=False,
)
return model.eval(), tokenizer, smodel
class Model(FAMModel):
def _init_model(self):
if self.config.init_from == 'safetensors':
with open(f'{os.path.dirname(self.config.ckpt_path)}/config.json', 'r') as f:
config = load(f)['stage2']
self.vocab_sizes = config['model_args']['vocab_sizes']
self.checkpoint_config = config['config']
config['meta']['tokenizer']['mergeable_ranks'] = {b64decode(k): v for k, v in config['meta']['tokenizer']['mergeable_ranks'].items()}
self.meta = config['meta']
self.load_meta = True
self.use_bpe_tokenizer = 'stoi' not in self.meta or 'itos' not in self.meta
self.speaker_cond = self.meta.get('speaker_cond')
speaker_emb_size = None
if self.speaker_cond:
speaker_emb_size = self.meta['speaker_emb_size']
model_args = config['model_args']
if 'causal' in self.checkpoint_config and self.checkpoint_config['causal'] is False:
self._encodec_ctx_window = model_args['block_size']
gptconf = GPTConfig(**model_args)
self.model = GPT(gptconf, speaker_emb_dim=speaker_emb_size)
load_model(self.model, self.config.ckpt_path)
super()._init_model()
class MetaVoiceModel(FAMTTS):
def __init__(self, model_name: str, *, seed: int = 1337, output_dir: str = 'outputs', enforce_safetensors: bool = True):
self._dtype = get_default_dtype()
self._device = get_device()
if os.path.exists(model_name):
if enforce_safetensors:
assert all(x in os.listdir(model_name) for x in ('config.json', 'second_stage.safetensors', 'first_stage.safetensors', 'speaker_encoder.safetensors')), 'Model is not compatible with safetensors'
self._model_dir = model_name
else:
print('WARNING: metavoice is allowing the use of non-safetensors models. Ensure you understand the risks of loading untrusted models at https://pytorch.org/docs/stable/generated/torch.load.html')
self._model_dir = model_name
else:
if enforce_safetensors:
fs = HfFileSystem()
files = [os.path.basename(x) for x in fs.ls(model_name, detail=False)]
assert all(x in files for x in ('config.json', 'second_stage.safetensors', 'first_stage.safetensors', 'speaker_encoder.safetensors')), 'Model is not compatible with safetensors'
self._model_dir = snapshot_download(repo_id=model_name, allow_patterns='second_stage.safetensors,first_stage.safetensors,speaker_encoder.safetensors,config.json')
else:
print('WARNING: metavoice is allowing the use of non-safetensors models. Ensure you understand the risks of loading untrusted models at https://pytorch.org/docs/stable/generated/torch.load.html')
self._model_dir = snapshot_download(repo_id=model_name)
self.first_stage_adapter = FlattenedInterleavedEncodec2Codebook(end_of_audio_token=self.END_OF_AUDIO_TOKEN)
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
is_safetensors = os.path.exists(f'{self._model_dir}/second_stage.safetensors')
second_stage_ckpt_path = f'{self._model_dir}/{"second_stage.safetensors" if is_safetensors else "second_stage.pt"}'
config_second_stage = InferenceConfig(
ckpt_path=second_stage_ckpt_path,
num_samples=1,
seed=seed,
device=self._device,
dtype=self._dtype,
compile=False,
init_from='safetensors' if is_safetensors else 'resume',
output_dir=self.output_dir,
)
data_adapter_second_stage = TiltedEncodec(end_of_audio_token=self.END_OF_AUDIO_TOKEN)
self.llm_second_stage = Model(
config_second_stage, TrainedBPETokeniser, EncodecDecoder, data_adapter_fn=data_adapter_second_stage.decode
)
self.enhancer = get_enhancer('df')
self.precision = {'float16': torch.float16, 'bfloat16': torch.bfloat16}[self._dtype]
build_model_kwargs = {
'precision': self.precision,
'device': self._device,
'compile': False,
'compile_prefill': True,
}
if is_safetensors:
fam.llm.fast_inference_utils._load_model = load_safetensors_model
checkpoint_path, spk_emb_ckpt_path = Path(f'{self._model_dir}/first_stage.safetensors'), Path(f'{self._model_dir}/speaker_encoder.safetensors')
else:
checkpoint_path, spk_emb_ckpt_path= Path(f'{self._model_dir}/first_stage.pt'), Path(f'{self._model_dir}/speaker_encoder.pt')
self.model, self.tokenizer, self.smodel, self.model_size = fam.llm.fast_inference_utils.build_model(
checkpoint_path=checkpoint_path,
spk_emb_ckpt_path=spk_emb_ckpt_path,
**build_model_kwargs
)
@torch.inference_mode()
def generate(self, text: str, source: str = 'https://upload.wikimedia.org/wikipedia/commons/e/e1/King_Charles_Addresses_Scottish_Parliament_-_12_September_2022.flac'):
self.synthesise(text, source)
def save(self, path: str):
save_model(self.model, os.path.join(path, 'first_stage.safetensors'))
save_model(self.smodel, os.path.join(path, 'speaker_encoder.safetensors'))
save_model(self.llm_second_stage.model, os.path.join(path, 'second_stage.safetensors'))
@classmethod
def from_hub(cls, path: str):
# TODO: TEMPORARY OUTPUT DIR
return cls(path, enforce_safetensors=True) |