shed-e's picture
update model card README.md
8536ae8
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - ag_news
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: results
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: ag_news
          type: ag_news
          config: default
          split: train[:40000]
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8951
          - name: F1
            type: f1
            value: 0.8964447542636089
          - name: Precision
            type: precision
            value: 0.8978261707981314
          - name: Recall
            type: recall
            value: 0.896474840596734

results

This model is a fine-tuned version of prajjwal1/bert-tiny on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3320
  • Accuracy: 0.8951
  • F1: 0.8964
  • Precision: 0.8978
  • Recall: 0.8965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2783 1.0 625 0.3046 0.8949 0.8960 0.8970 0.8963
0.1878 2.0 1250 0.3139 0.8954 0.8971 0.8995 0.8965
0.1311 3.0 1875 0.3320 0.8951 0.8964 0.8978 0.8965

Framework versions

  • Transformers 4.22.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1