shayonhuggingface's picture
update model card README.md
93ace68
|
raw
history blame
3.71 kB
metadata
base_model: Fsoft-AIC/videberta-xsmall
tags:
  - generated_from_trainer
datasets:
  - vietnamese_students_feedback
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: videberta-sentiment-analysis
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: vietnamese_students_feedback
          type: vietnamese_students_feedback
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9496688741721855
          - name: Precision
            type: precision
            value: 0.9539227895392279
          - name: Recall
            type: recall
            value: 0.9515527950310559
          - name: F1
            type: f1
            value: 0.9527363184079602

videberta-sentiment-analysis

This model is a fine-tuned version of Fsoft-AIC/videberta-xsmall on the vietnamese_students_feedback dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2903
  • Accuracy: 0.9497
  • Precision: 0.9539
  • Recall: 0.9516
  • F1: 0.9527

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2029 2.91 500 0.2022 0.9358 0.9414 0.9379 0.9396
0.1435 5.81 1000 0.2109 0.9325 0.9200 0.9565 0.9379
0.1023 8.72 1500 0.2648 0.9344 0.9263 0.9528 0.9394
0.08 11.63 2000 0.2360 0.9437 0.9455 0.9491 0.9473
0.0628 14.53 2500 0.2758 0.9417 0.9377 0.9540 0.9458
0.0493 17.44 3000 0.3189 0.9351 0.9223 0.9590 0.9403
0.0397 20.35 3500 0.3662 0.9377 0.9257 0.9602 0.9427
0.0318 23.26 4000 0.2903 0.9497 0.9539 0.9516 0.9527
0.0244 26.16 4500 0.3962 0.9450 0.9381 0.9602 0.9490
0.0176 29.07 5000 0.3940 0.9464 0.9425 0.9578 0.9501
0.0165 31.98 5500 0.3990 0.9411 0.9486 0.9404 0.9445
0.0139 34.88 6000 0.4565 0.9424 0.9336 0.9602 0.9467
0.0123 37.79 6500 0.3779 0.9457 0.9491 0.9491 0.9491
0.0118 40.7 7000 0.4308 0.9444 0.9380 0.9590 0.9484
0.0086 43.6 7500 0.4732 0.9404 0.9344 0.9553 0.9447
0.0076 46.51 8000 0.4197 0.9457 0.9547 0.9429 0.9487
0.0067 49.42 8500 0.4952 0.9444 0.9391 0.9578 0.9483
0.0062 52.33 9000 0.4907 0.9437 0.9444 0.9503 0.9474

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3