shayonhuggingface commited on
Commit
93ace68
·
1 Parent(s): 570a724

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Fsoft-AIC/videberta-xsmall
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - vietnamese_students_feedback
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: videberta-sentiment-analysis
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ dataset:
19
+ name: vietnamese_students_feedback
20
+ type: vietnamese_students_feedback
21
+ config: default
22
+ split: validation
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.9496688741721855
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.9539227895392279
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.9515527950310559
34
+ - name: F1
35
+ type: f1
36
+ value: 0.9527363184079602
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # videberta-sentiment-analysis
43
+
44
+ This model is a fine-tuned version of [Fsoft-AIC/videberta-xsmall](https://huggingface.co/Fsoft-AIC/videberta-xsmall) on the vietnamese_students_feedback dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.2903
47
+ - Accuracy: 0.9497
48
+ - Precision: 0.9539
49
+ - Recall: 0.9516
50
+ - F1: 0.9527
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 64
71
+ - eval_batch_size: 64
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 100
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
80
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
81
+ | 0.2029 | 2.91 | 500 | 0.2022 | 0.9358 | 0.9414 | 0.9379 | 0.9396 |
82
+ | 0.1435 | 5.81 | 1000 | 0.2109 | 0.9325 | 0.9200 | 0.9565 | 0.9379 |
83
+ | 0.1023 | 8.72 | 1500 | 0.2648 | 0.9344 | 0.9263 | 0.9528 | 0.9394 |
84
+ | 0.08 | 11.63 | 2000 | 0.2360 | 0.9437 | 0.9455 | 0.9491 | 0.9473 |
85
+ | 0.0628 | 14.53 | 2500 | 0.2758 | 0.9417 | 0.9377 | 0.9540 | 0.9458 |
86
+ | 0.0493 | 17.44 | 3000 | 0.3189 | 0.9351 | 0.9223 | 0.9590 | 0.9403 |
87
+ | 0.0397 | 20.35 | 3500 | 0.3662 | 0.9377 | 0.9257 | 0.9602 | 0.9427 |
88
+ | 0.0318 | 23.26 | 4000 | 0.2903 | 0.9497 | 0.9539 | 0.9516 | 0.9527 |
89
+ | 0.0244 | 26.16 | 4500 | 0.3962 | 0.9450 | 0.9381 | 0.9602 | 0.9490 |
90
+ | 0.0176 | 29.07 | 5000 | 0.3940 | 0.9464 | 0.9425 | 0.9578 | 0.9501 |
91
+ | 0.0165 | 31.98 | 5500 | 0.3990 | 0.9411 | 0.9486 | 0.9404 | 0.9445 |
92
+ | 0.0139 | 34.88 | 6000 | 0.4565 | 0.9424 | 0.9336 | 0.9602 | 0.9467 |
93
+ | 0.0123 | 37.79 | 6500 | 0.3779 | 0.9457 | 0.9491 | 0.9491 | 0.9491 |
94
+ | 0.0118 | 40.7 | 7000 | 0.4308 | 0.9444 | 0.9380 | 0.9590 | 0.9484 |
95
+ | 0.0086 | 43.6 | 7500 | 0.4732 | 0.9404 | 0.9344 | 0.9553 | 0.9447 |
96
+ | 0.0076 | 46.51 | 8000 | 0.4197 | 0.9457 | 0.9547 | 0.9429 | 0.9487 |
97
+ | 0.0067 | 49.42 | 8500 | 0.4952 | 0.9444 | 0.9391 | 0.9578 | 0.9483 |
98
+ | 0.0062 | 52.33 | 9000 | 0.4907 | 0.9437 | 0.9444 | 0.9503 | 0.9474 |
99
+
100
+
101
+ ### Framework versions
102
+
103
+ - Transformers 4.31.0
104
+ - Pytorch 2.0.1+cu118
105
+ - Datasets 2.13.1
106
+ - Tokenizers 0.13.3