Token Classification
Scikit-learn
English
ner
legal
crf
File size: 12,431 Bytes
6830d6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
---
license: apache-2.0
datasets:
- darrow-ai/LegalLensNER
language:
- en
metrics:
- f1
pipeline_tag: token-classification
library_name: sklearn
tags:
- ner
- legal
- crf
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->
Conditional Random Field model for performing named entity recognition with hand crafted features. Named entities recognied - Violation-on, Violation-by, and Law.
The dataset is of the BIO format. The model achieves an F1-score of 0.32.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->
The model was developed for LegalLens 2024 competition as part of Natural Legal Language Processing 2024. The model has handcrafted features for identifying named
entities in the BIO format.


- **Developed by:** Shashank M Chakravarthy
- **Funded by [optional]:** NA
- **Shared by [optional]:** NA
- **Model type:** Statistical Model
- **Language(s) (NLP):** English
- **License:** Apache 2.0 License
- **Finetuned from model [optional]:** NA

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** NA
- **Paper [optional]:** [https://aclanthology.org/2024.nllp-1.33.pdf]
- **Demo [optional]:** NA

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
The model is used to detect named entities in unstructured text. The model can be extended to other entities with further modification to the handcrafted features.

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

The model can be directly used on any unstructured text with a bit of preprocessing. The files contain the evaluation script.

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->


### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
This model is handcrafted for detecting violations and law in text. Can be used for other legal text which may contain similar entities.

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

The limitation comes with the handcrafting the features. 

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

If the text used for prediction is improperly processed without POS tags, the model will not perform as its designed to.

## How to Get Started with the Model

Use the code below to get started with the model.
### Load libraries
```
import ast
import pandas as pd
import joblib
import nltk
from nltk import pos_tag
import string
from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer
```

### Check if nltk modules are downloaded, if not download them
```
nltk.download('wordnet')
nltk.download('omw-1.4')
nltk.download("averaged_perceptron_tagger")
```
### Class for grouping tokens as sentences (redundant if text processed directly)
```
class getsentence(object):   
    '''
    This class is used to get the sentences from the dataset.
    Converts from BIO format to sentences using their sentence numbers
    '''
    def __init__(self, data):
        self.n_sent = 1.0
        self.data = data
        self.empty = False
        self.grouped = self.data.groupby("sentence_num").apply(self._agg_func)
        self.sentences = [s for s in self.grouped]
   
    def _agg_func(self, s):
        return [(w, p) for w, p in zip(s["token"].values.tolist(),
                                       s["pos_tag"].values.tolist())]

```
### Creates features for words in a sentence (code can be reduced using iteration)
```
def word2features(sent, i):
    '''
    This method is used to extract features from the words in the sentence.
    The main features extracted are:
    - word.lower(): The word in lowercase
    - word.isdigit(): If the word is a digit
    - word.punct(): If the word is a punctuation
    - postag: The pos tag of the word
    - word.lemma(): The lemma of the word
    - word.stem(): The stem of the word
    The features (not all) are also extracted for the 4 previous and 4 next words.
    '''
    global token_count
    wordnet_lemmatizer = WordNetLemmatizer()
    porter_stemmer = PorterStemmer()
    word = sent[i][0]
    postag = sent[i][1]

    features = {
        'bias': 1.0,
        'word.lower()': word.lower(),
        'word.isdigit()': word.isdigit(),
        # Check if its punctuations
        'word.punct()': word in string.punctuation,
        'postag': postag,
        # Lemma of the word
        'word.lemma()': wordnet_lemmatizer.lemmatize(word),
        # Stem of the word
        'word.stem()': porter_stemmer.stem(word)
    }
    if i > 0:
        word1 = sent[i-1][0]
        postag1 = sent[i-1][1]
        features.update({
            '-1:word.lower()': word1.lower(),
            '-1:word.isdigit()': word1.isdigit(),
            '-1:word.punct()': word1 in string.punctuation,
            '-1:postag': postag1
        })
        if i - 2 >= 0:
            features.update({
                '-2:word.lower()': sent[i-2][0].lower(),
                '-2:word.isdigit()': sent[i-2][0].isdigit(),
                '-2:word.punct()': sent[i-2][0] in string.punctuation,
                '-2:postag': sent[i-2][1]
            })
        if i - 3 >= 0:
            features.update({
                '-3:word.lower()': sent[i-3][0].lower(),
                '-3:word.isdigit()': sent[i-3][0].isdigit(),
                '-3:word.punct()': sent[i-3][0] in string.punctuation,
                '-3:postag': sent[i-3][1]
            })
        if i - 4 >= 0:
            features.update({
                '-4:word.lower()': sent[i-4][0].lower(),
                '-4:word.isdigit()': sent[i-4][0].isdigit(),
                '-4:word.punct()': sent[i-4][0] in string.punctuation,
                '-4:postag': sent[i-4][1]
            })
    else:
        features['BOS'] = True

    if i < len(sent)-1:
        word1 = sent[i+1][0]
        postag1 = sent[i+1][1]
        features.update({
            '+1:word.lower()': word1.lower(),
            '+1:word.isdigit()': word1.isdigit(),
            '+1:word.punct()': word1 in string.punctuation,
            '+1:postag': postag1
        })
        if i + 2 < len(sent):
            features.update({
                '+2:word.lower()': sent[i+2][0].lower(),
                '+2:word.isdigit()': sent[i+2][0].isdigit(),
                '+2:word.punct()': sent[i+2][0] in string.punctuation,
                '+2:postag': sent[i+2][1]
            })
        if i + 3 < len(sent):
            features.update({
                '+3:word.lower()': sent[i+3][0].lower(),
                '+3:word.isdigit()': sent[i+3][0].isdigit(),
                '+3:word.punct()': sent[i+3][0] in string.punctuation,
                '+3:postag': sent[i+3][1]
            })
        if i + 4 < len(sent):
            features.update({
                '+4:word.lower()': sent[i+4][0].lower(),
                '+4:word.isdigit()': sent[i+4][0].isdigit(),
                '+4:word.punct()': sent[i+4][0] in string.punctuation,
                '+4:postag': sent[i+4][1]
            })
    else:
        features['EOS'] = True

    return features
```
### Obtain features for a given sentence
```
def sent2features(sent):
    '''
    This method is used to extract features from the sentence.
    '''
    return [word2features(sent, i) for i in range(len(sent))]
```
### Load file from your directory
```
df_eval = pd.read_excel("testset_NER_LegalLens.xlsx")
```
### Evaluate data type and create pos_tags for each token
```
df_eval["tokens"] = df_eval["tokens"].apply(ast.literal_eval)
df_eval['pos_tags'] = df_eval['tokens'].apply(lambda x: [tag[1]
                                                         for tag in pos_tag(x)])
```
### Aggregate tokens to sentences
```
data_eval = []
for i in range(len(df_eval)):
    for j in range(len(df_eval["tokens"][i])):
        data_eval.append(
            {
                "sentence_num": i+1,
                "id": df_eval["id"][i],
                "token": df_eval["tokens"][i][j],
                "pos_tag": df_eval["pos_tags"][i][j],
            }
        )
data_eval = pd.DataFrame(data_eval)
getter = getsentence(data_eval)
sentences_eval = getter.sentences
X_eval = [sent2features(s) for s in sentences_eval]
```
### Load model from your directory
```
crf = joblib.load("../models/crf.pkl")
y_pred_eval = crf.predict(X_eval)
print("NER tags predicted.")
df_eval["ner_tags"] = y_pred_eval
df_eval.drop(columns=["pos_tags"], inplace=True)
print("Saving the predictions...")
df_eval.to_csv("predictions_NERLens.csv", index=False)
print("Predictions saved.")
```

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[https://huggingface.co/datasets/darrow-ai/LegalLensNER]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
The dataset was first evaluated for its datatype, POS_tags were created for each token in the text. With handcrafted features,
the model was trained on a CPU. Training time is around 20-30 minutes for this dataset.
#### Preprocessing [optional]
For every token, POS_tags were assigned using NLTK library. 


#### Training Hyperparameters

- **Training regime:** NA <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
NA

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->
The model was evaluated using macro-F1 score. A score of 0.32 was obtained on unseen test data.

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[https://huggingface.co/datasets/darrow-ai/LegalLensNER]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

Macro-F1 score as it evaluates the true performance of the model and mitigates the performance boost created by highly skewed entities in the dataset.

### Results

0.32 macro-F1 score on unseen data.

#### Summary

The model was designed and developed to tackle NER task in unstructured text.

## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->
NA

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** 13th Gen Intel(R) Core(TM) i7-1365U
- **Hours used:** 0.5 hours
- **Cloud Provider:** NA
- **Compute Region:** NA
- **Carbon Emitted:** Unknown

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]