metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit-lr-poly
results: []
vit-lr-poly
This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:
- Loss: 0.4501
- Accuracy: 0.8488
- Precision: 0.8418
- Recall: 0.8488
- F1: 0.8427
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5905 | 0.31 | 100 | 0.6207 | 0.7788 | 0.7719 | 0.7788 | 0.7700 |
0.5605 | 0.62 | 200 | 0.7325 | 0.7621 | 0.7503 | 0.7621 | 0.7152 |
0.7068 | 0.93 | 300 | 0.5869 | 0.7920 | 0.8184 | 0.7920 | 0.7952 |
0.3773 | 1.25 | 400 | 0.5412 | 0.7854 | 0.8200 | 0.7854 | 0.7964 |
0.3501 | 1.56 | 500 | 0.5548 | 0.8214 | 0.8133 | 0.8214 | 0.8029 |
0.31 | 1.87 | 600 | 0.6007 | 0.7881 | 0.8345 | 0.7881 | 0.7906 |
0.1492 | 2.18 | 700 | 0.4845 | 0.8370 | 0.8433 | 0.8370 | 0.8340 |
0.185 | 2.49 | 800 | 0.4501 | 0.8488 | 0.8418 | 0.8488 | 0.8427 |
0.2438 | 2.8 | 900 | 0.4976 | 0.8440 | 0.8412 | 0.8440 | 0.8338 |
0.0604 | 3.12 | 1000 | 0.5850 | 0.8408 | 0.8425 | 0.8408 | 0.8405 |
0.0545 | 3.43 | 1100 | 0.5685 | 0.8492 | 0.8476 | 0.8492 | 0.8445 |
0.0719 | 3.74 | 1200 | 0.6311 | 0.8523 | 0.8490 | 0.8523 | 0.8445 |
0.0809 | 4.05 | 1300 | 0.5321 | 0.8561 | 0.8515 | 0.8561 | 0.8528 |
0.0259 | 4.36 | 1400 | 0.8158 | 0.8408 | 0.8329 | 0.8408 | 0.8288 |
0.0586 | 4.67 | 1500 | 0.7028 | 0.8315 | 0.8359 | 0.8315 | 0.8249 |
0.0218 | 4.98 | 1600 | 0.8059 | 0.8381 | 0.8380 | 0.8381 | 0.8316 |
0.0108 | 5.3 | 1700 | 0.7948 | 0.8474 | 0.8484 | 0.8474 | 0.8470 |
0.1129 | 5.61 | 1800 | 0.8089 | 0.8426 | 0.8492 | 0.8426 | 0.8431 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2