vit-lr-poly / README.md
sharren's picture
🍻 cheers
688d76a verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-lr-poly
    results: []

vit-lr-poly

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4501
  • Accuracy: 0.8488
  • Precision: 0.8418
  • Recall: 0.8488
  • F1: 0.8427

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5905 0.31 100 0.6207 0.7788 0.7719 0.7788 0.7700
0.5605 0.62 200 0.7325 0.7621 0.7503 0.7621 0.7152
0.7068 0.93 300 0.5869 0.7920 0.8184 0.7920 0.7952
0.3773 1.25 400 0.5412 0.7854 0.8200 0.7854 0.7964
0.3501 1.56 500 0.5548 0.8214 0.8133 0.8214 0.8029
0.31 1.87 600 0.6007 0.7881 0.8345 0.7881 0.7906
0.1492 2.18 700 0.4845 0.8370 0.8433 0.8370 0.8340
0.185 2.49 800 0.4501 0.8488 0.8418 0.8488 0.8427
0.2438 2.8 900 0.4976 0.8440 0.8412 0.8440 0.8338
0.0604 3.12 1000 0.5850 0.8408 0.8425 0.8408 0.8405
0.0545 3.43 1100 0.5685 0.8492 0.8476 0.8492 0.8445
0.0719 3.74 1200 0.6311 0.8523 0.8490 0.8523 0.8445
0.0809 4.05 1300 0.5321 0.8561 0.8515 0.8561 0.8528
0.0259 4.36 1400 0.8158 0.8408 0.8329 0.8408 0.8288
0.0586 4.67 1500 0.7028 0.8315 0.8359 0.8315 0.8249
0.0218 4.98 1600 0.8059 0.8381 0.8380 0.8381 0.8316
0.0108 5.3 1700 0.7948 0.8474 0.8484 0.8474 0.8470
0.1129 5.61 1800 0.8089 0.8426 0.8492 0.8426 0.8431

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2