vit-epsilon-1e-9 / README.md
sharren's picture
🍻 cheers
4a3cf5e verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-epsilon-1e-9
    results: []

vit-epsilon-1e-9

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5143
  • Accuracy: 0.8131
  • Precision: 0.8359
  • Recall: 0.8131
  • F1: 0.8206

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-09
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1733
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.7127 1.0 321 0.9579 0.6987 0.6581 0.6987 0.6331
1.1596 2.0 642 0.7026 0.7299 0.7442 0.7299 0.7299
1.0337 3.0 963 0.6560 0.7549 0.7647 0.7549 0.7356
0.9695 4.0 1284 0.5708 0.7656 0.7963 0.7656 0.7758
0.9137 5.0 1605 0.6460 0.7611 0.7828 0.7611 0.7625
1.0053 6.0 1926 0.6020 0.7673 0.8049 0.7673 0.7797
0.896 7.0 2247 0.7087 0.7271 0.8055 0.7271 0.7477
0.7646 8.0 2568 0.6615 0.7441 0.8134 0.7441 0.7622
0.7262 9.0 2889 0.5611 0.7975 0.8190 0.7975 0.7985
0.7025 10.0 3210 0.5338 0.7975 0.8278 0.7975 0.8058
0.6138 11.0 3531 0.5143 0.8131 0.8359 0.8131 0.8206
0.5582 12.0 3852 0.6157 0.7864 0.8253 0.7864 0.7992
0.4736 13.0 4173 0.6899 0.8117 0.8253 0.8117 0.8007
0.4581 14.0 4494 0.6062 0.8128 0.8447 0.8128 0.8199
0.407 15.0 4815 0.5317 0.8308 0.8410 0.8308 0.8339
0.369 16.0 5136 0.6475 0.8197 0.8414 0.8197 0.8270
0.2855 17.0 5457 0.5153 0.8617 0.8572 0.8617 0.8578
0.2545 18.0 5778 0.5455 0.8436 0.8555 0.8436 0.8473
0.2221 19.0 6099 0.5955 0.8471 0.8624 0.8471 0.8516
0.2143 20.0 6420 0.5772 0.8575 0.8604 0.8575 0.8582
0.1619 21.0 6741 0.6021 0.8627 0.8567 0.8627 0.8572

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2