metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit-epsilon-1e-9
results: []
vit-epsilon-1e-9
This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:
- Loss: 0.5143
- Accuracy: 0.8131
- Precision: 0.8359
- Recall: 0.8131
- F1: 0.8206
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-09
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1733
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.7127 | 1.0 | 321 | 0.9579 | 0.6987 | 0.6581 | 0.6987 | 0.6331 |
1.1596 | 2.0 | 642 | 0.7026 | 0.7299 | 0.7442 | 0.7299 | 0.7299 |
1.0337 | 3.0 | 963 | 0.6560 | 0.7549 | 0.7647 | 0.7549 | 0.7356 |
0.9695 | 4.0 | 1284 | 0.5708 | 0.7656 | 0.7963 | 0.7656 | 0.7758 |
0.9137 | 5.0 | 1605 | 0.6460 | 0.7611 | 0.7828 | 0.7611 | 0.7625 |
1.0053 | 6.0 | 1926 | 0.6020 | 0.7673 | 0.8049 | 0.7673 | 0.7797 |
0.896 | 7.0 | 2247 | 0.7087 | 0.7271 | 0.8055 | 0.7271 | 0.7477 |
0.7646 | 8.0 | 2568 | 0.6615 | 0.7441 | 0.8134 | 0.7441 | 0.7622 |
0.7262 | 9.0 | 2889 | 0.5611 | 0.7975 | 0.8190 | 0.7975 | 0.7985 |
0.7025 | 10.0 | 3210 | 0.5338 | 0.7975 | 0.8278 | 0.7975 | 0.8058 |
0.6138 | 11.0 | 3531 | 0.5143 | 0.8131 | 0.8359 | 0.8131 | 0.8206 |
0.5582 | 12.0 | 3852 | 0.6157 | 0.7864 | 0.8253 | 0.7864 | 0.7992 |
0.4736 | 13.0 | 4173 | 0.6899 | 0.8117 | 0.8253 | 0.8117 | 0.8007 |
0.4581 | 14.0 | 4494 | 0.6062 | 0.8128 | 0.8447 | 0.8128 | 0.8199 |
0.407 | 15.0 | 4815 | 0.5317 | 0.8308 | 0.8410 | 0.8308 | 0.8339 |
0.369 | 16.0 | 5136 | 0.6475 | 0.8197 | 0.8414 | 0.8197 | 0.8270 |
0.2855 | 17.0 | 5457 | 0.5153 | 0.8617 | 0.8572 | 0.8617 | 0.8578 |
0.2545 | 18.0 | 5778 | 0.5455 | 0.8436 | 0.8555 | 0.8436 | 0.8473 |
0.2221 | 19.0 | 6099 | 0.5955 | 0.8471 | 0.8624 | 0.8471 | 0.8516 |
0.2143 | 20.0 | 6420 | 0.5772 | 0.8575 | 0.8604 | 0.8575 | 0.8582 |
0.1619 | 21.0 | 6741 | 0.6021 | 0.8627 | 0.8567 | 0.8627 | 0.8572 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2