vit-dropout-0.4 / README.md
sharren's picture
🍻 cheers
36fc753 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-dropout-0.4
    results: []

vit-dropout-0.4

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4924
  • Accuracy: 0.8291
  • Precision: 0.8250
  • Recall: 0.8291
  • F1: 0.8244

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1219
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.6459 1.0 321 0.8160 0.7292 0.7119 0.7292 0.6910
1.0644 2.0 642 0.6323 0.7514 0.7687 0.7514 0.7575
1.0213 3.0 963 0.6378 0.7635 0.7718 0.7635 0.7422
0.9727 4.0 1284 0.6045 0.7438 0.7972 0.7438 0.7594
0.9062 5.0 1605 0.5953 0.7902 0.7965 0.7902 0.7802
0.8719 6.0 1926 0.6095 0.7743 0.8084 0.7743 0.7839
0.7537 7.0 2247 0.5970 0.7639 0.8125 0.7639 0.7778
0.677 8.0 2568 0.7108 0.7074 0.8148 0.7074 0.7301
0.6638 9.0 2889 0.4924 0.8291 0.8250 0.8291 0.8244
0.5787 10.0 3210 0.5415 0.8162 0.8406 0.8162 0.8222
0.5373 11.0 3531 0.5298 0.8103 0.8409 0.8103 0.8189
0.4923 12.0 3852 0.5428 0.8117 0.8444 0.8117 0.8213
0.3798 13.0 4173 0.4968 0.8499 0.8470 0.8499 0.8467
0.3912 14.0 4494 0.5339 0.8443 0.8531 0.8443 0.8460
0.3002 15.0 4815 0.5219 0.8450 0.8548 0.8450 0.8481
0.2744 16.0 5136 0.6369 0.8204 0.8482 0.8204 0.8280
0.2251 17.0 5457 0.5156 0.8571 0.8561 0.8571 0.8556
0.2187 18.0 5778 0.5825 0.8457 0.8550 0.8457 0.8491
0.1767 19.0 6099 0.5693 0.8526 0.8605 0.8526 0.8551

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2