metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit-dropout-0.4
results: []
vit-dropout-0.4
This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:
- Loss: 0.4924
- Accuracy: 0.8291
- Precision: 0.8250
- Recall: 0.8291
- F1: 0.8244
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1219
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.6459 | 1.0 | 321 | 0.8160 | 0.7292 | 0.7119 | 0.7292 | 0.6910 |
1.0644 | 2.0 | 642 | 0.6323 | 0.7514 | 0.7687 | 0.7514 | 0.7575 |
1.0213 | 3.0 | 963 | 0.6378 | 0.7635 | 0.7718 | 0.7635 | 0.7422 |
0.9727 | 4.0 | 1284 | 0.6045 | 0.7438 | 0.7972 | 0.7438 | 0.7594 |
0.9062 | 5.0 | 1605 | 0.5953 | 0.7902 | 0.7965 | 0.7902 | 0.7802 |
0.8719 | 6.0 | 1926 | 0.6095 | 0.7743 | 0.8084 | 0.7743 | 0.7839 |
0.7537 | 7.0 | 2247 | 0.5970 | 0.7639 | 0.8125 | 0.7639 | 0.7778 |
0.677 | 8.0 | 2568 | 0.7108 | 0.7074 | 0.8148 | 0.7074 | 0.7301 |
0.6638 | 9.0 | 2889 | 0.4924 | 0.8291 | 0.8250 | 0.8291 | 0.8244 |
0.5787 | 10.0 | 3210 | 0.5415 | 0.8162 | 0.8406 | 0.8162 | 0.8222 |
0.5373 | 11.0 | 3531 | 0.5298 | 0.8103 | 0.8409 | 0.8103 | 0.8189 |
0.4923 | 12.0 | 3852 | 0.5428 | 0.8117 | 0.8444 | 0.8117 | 0.8213 |
0.3798 | 13.0 | 4173 | 0.4968 | 0.8499 | 0.8470 | 0.8499 | 0.8467 |
0.3912 | 14.0 | 4494 | 0.5339 | 0.8443 | 0.8531 | 0.8443 | 0.8460 |
0.3002 | 15.0 | 4815 | 0.5219 | 0.8450 | 0.8548 | 0.8450 | 0.8481 |
0.2744 | 16.0 | 5136 | 0.6369 | 0.8204 | 0.8482 | 0.8204 | 0.8280 |
0.2251 | 17.0 | 5457 | 0.5156 | 0.8571 | 0.8561 | 0.8571 | 0.8556 |
0.2187 | 18.0 | 5778 | 0.5825 | 0.8457 | 0.8550 | 0.8457 | 0.8491 |
0.1767 | 19.0 | 6099 | 0.5693 | 0.8526 | 0.8605 | 0.8526 | 0.8551 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2