File size: 4,743 Bytes
f4b700f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import torch
from torch import nn
import torchaudio
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoTokenizer, HubertModel, AutoProcessor
from .config import SpeechLLMModelConfig
from peft import LoraConfig, get_peft_model
class HubertXCNNEnoder(nn.Module):
def __init__(self, audio_enc_dim, llm_dim):
super().__init__()
self.encoder = HubertModel.from_pretrained('facebook/hubert-xlarge-ll60k')
for param in self.encoder.parameters():
param.requires_grad = False
self.cnn = nn.Sequential(
nn.ReLU(),
nn.Conv1d(audio_enc_dim, llm_dim // 2, kernel_size=5, stride=1, padding=0),
nn.ReLU(),
nn.Conv1d(llm_dim // 2, llm_dim, kernel_size=5, stride=2, padding=0),
nn.ReLU(),
nn.Conv1d(llm_dim, llm_dim, kernel_size=3, stride=1, padding=0),
)
def forward(self, x):
x = self.encoder(x).last_hidden_state
x = self.cnn(x.transpose(1, 2)).transpose(1, 2)
return x
class SpeechLLMModel(PreTrainedModel):
config_class = SpeechLLMModelConfig
def __init__(self, config):
super().__init__(config)
self.audio_processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
self.audio_encoder = HubertXCNNEnoder(config.audio_enc_dim, config.llm_dim)
self.llm_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
self.llm_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
peft_config = LoraConfig(
r=4,
lora_alpha=8,
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'],
lora_dropout=0.05,
task_type="CAUSAL_LM",
)
self.llm_model = get_peft_model(self.llm_model, peft_config)
def encode(self, mel, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids):
batch_size = mel.shape[0]
with torch.no_grad():
speech_embeds = self.audio_encoder(mel)
embedder = self.llm_model.model.model.embed_tokens
pre_prompt_embeds = embedder(pre_tokenized_ids)
post_prompt_embeds = embedder(post_tokenized_ids)
output_prompt_embeds = embedder(output_tokenized_ids)
combined_embeds = torch.cat([pre_prompt_embeds, speech_embeds, post_prompt_embeds, output_prompt_embeds], dim=1)
atts = torch.ones(combined_embeds.size()[:-1], dtype=torch.long).to(combined_embeds.device)
input_token_length = pre_tokenized_ids.shape[1] + speech_embeds.shape[1] + post_tokenized_ids.shape[1]
label_ids = torch.cat([
torch.ones([batch_size, input_token_length], device=combined_embeds.device) * -100,
output_tokenized_ids
], 1).to(combined_embeds.device).to(torch.int64)
return combined_embeds, atts, label_ids
def forward(self, wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids, attention_mask=None):
combined_embeds, atts, label_ids = self.encode(wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids)
outputs = self.llm_model(inputs_embeds=combined_embeds, attention_mask=attention_mask)
return outputs
def generate_meta(self, audio_path, instruction="Give me the following information about the audio [Transcript]", max_new_tokens=2000):
pre_speech_prompt = f'''Instruction:
{instruction}
Input:
<speech>'''
post_speech_prompt = f'''</speech>
Output:'''
output_prompt = '\n<s>'
with torch.no_grad():
wav_tensor, sr = torchaudio.load(audio_path)
wav_tensor = self.audio_processor(wav_tensor.squeeze(), return_tensors="pt", sampling_rate=16000).input_values
pre_tokenized_ids = self.llm_tokenizer(pre_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
post_tokenized_ids = self.llm_tokenizer(post_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
output_tokenized_ids = self.llm_tokenizer(output_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
combined_embeds, atts, label_ids = self.encode(wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids)
out = self.llm_model.generate(
inputs_embeds=combined_embeds,
max_new_tokens=max_new_tokens,
).cpu().tolist()[0]
output_text = self.llm_tokenizer.decode(out, skip_special_tokens=False)
return output_text
|