Feature Extraction
Transformers
Safetensors
English
custom_model
multi-modal
conversational
speechllm
speech2text
custom_code
File size: 4,743 Bytes
f4b700f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
from torch import nn
import torchaudio
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoTokenizer, HubertModel, AutoProcessor
from .config import SpeechLLMModelConfig
from peft import LoraConfig, get_peft_model

class HubertXCNNEnoder(nn.Module):
    def __init__(self, audio_enc_dim, llm_dim):
        super().__init__()
        self.encoder = HubertModel.from_pretrained('facebook/hubert-xlarge-ll60k')
        for param in self.encoder.parameters():
            param.requires_grad = False

        self.cnn = nn.Sequential(
            nn.ReLU(),
            nn.Conv1d(audio_enc_dim, llm_dim // 2, kernel_size=5, stride=1, padding=0),
            nn.ReLU(),
            nn.Conv1d(llm_dim // 2, llm_dim, kernel_size=5, stride=2, padding=0),
            nn.ReLU(),
            nn.Conv1d(llm_dim, llm_dim, kernel_size=3, stride=1, padding=0),
        )

    def forward(self, x):
        x = self.encoder(x).last_hidden_state
        x = self.cnn(x.transpose(1, 2)).transpose(1, 2)
        return x

class SpeechLLMModel(PreTrainedModel):
    config_class = SpeechLLMModelConfig

    def __init__(self, config):
        super().__init__(config)
        self.audio_processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
        self.audio_encoder = HubertXCNNEnoder(config.audio_enc_dim, config.llm_dim)
        self.llm_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
        self.llm_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")

        peft_config = LoraConfig(
            r=4,
            lora_alpha=8,
            target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'],
            lora_dropout=0.05,
            task_type="CAUSAL_LM",
        )
        self.llm_model = get_peft_model(self.llm_model, peft_config)

    def encode(self, mel, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids):
        batch_size = mel.shape[0]

        with torch.no_grad():
            speech_embeds = self.audio_encoder(mel)
        embedder = self.llm_model.model.model.embed_tokens
        pre_prompt_embeds = embedder(pre_tokenized_ids)
        post_prompt_embeds = embedder(post_tokenized_ids)
        output_prompt_embeds = embedder(output_tokenized_ids)

        combined_embeds = torch.cat([pre_prompt_embeds, speech_embeds, post_prompt_embeds, output_prompt_embeds], dim=1)
        atts = torch.ones(combined_embeds.size()[:-1], dtype=torch.long).to(combined_embeds.device)

        input_token_length = pre_tokenized_ids.shape[1] + speech_embeds.shape[1] + post_tokenized_ids.shape[1]
        label_ids = torch.cat([
            torch.ones([batch_size, input_token_length], device=combined_embeds.device) * -100,
            output_tokenized_ids
        ], 1).to(combined_embeds.device).to(torch.int64)
        return combined_embeds, atts, label_ids

    def forward(self, wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids, attention_mask=None):
        combined_embeds, atts, label_ids = self.encode(wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids)
        outputs = self.llm_model(inputs_embeds=combined_embeds, attention_mask=attention_mask)
        return outputs
    
    def generate_meta(self, audio_path, instruction="Give me the following information about the audio [Transcript]", max_new_tokens=2000):
        pre_speech_prompt = f'''Instruction:
{instruction}

Input: 
<speech>'''
        post_speech_prompt = f'''</speech>

Output:'''
        output_prompt = '\n<s>'

        with torch.no_grad():
            wav_tensor, sr = torchaudio.load(audio_path)
            wav_tensor = self.audio_processor(wav_tensor.squeeze(), return_tensors="pt", sampling_rate=16000).input_values

            pre_tokenized_ids = self.llm_tokenizer(pre_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
            post_tokenized_ids = self.llm_tokenizer(post_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
            output_tokenized_ids = self.llm_tokenizer(output_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]

            combined_embeds, atts, label_ids = self.encode(wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids)

            out = self.llm_model.generate(
                inputs_embeds=combined_embeds,
                max_new_tokens=max_new_tokens,
            ).cpu().tolist()[0]

            output_text = self.llm_tokenizer.decode(out, skip_special_tokens=False)
            return output_text