File size: 2,130 Bytes
feea713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---

base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: whisper-tiny-300v2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: test
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 86.48648648648648
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-tiny-300v2

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4117
- Wer Ortho: 83.7838
- Wer: 86.4865

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 16

- eval_batch_size: 16

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: constant_with_warmup

- lr_scheduler_warmup_steps: 30
- training_steps: 300



### Training results



| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer     |

|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|

| 0.2322        | 20.0  | 60   | 1.3194          | 83.7838   | 83.7838 |

| 0.0267        | 40.0  | 120  | 1.3785          | 81.0811   | 81.0811 |

| 0.0002        | 60.0  | 180  | 1.3838          | 81.0811   | 81.0811 |

| 0.0001        | 80.0  | 240  | 1.4049          | 83.7838   | 83.7838 |

| 0.0           | 100.0 | 300  | 1.4117          | 83.7838   | 86.4865 |





### Framework versions



- Transformers 4.41.2

- Pytorch 2.3.0+cu121

- Datasets 2.19.1

- Tokenizers 0.19.1