File size: 2,235 Bytes
5bb5ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---

license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: whisper-small-finetuned-300
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: test
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 64.86486486486487
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-finetuned-300

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7359
- Wer Ortho: 64.8649
- Wer: 64.8649

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 1

- eval_batch_size: 1

- seed: 42

- gradient_accumulation_steps: 16

- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 30

- training_steps: 300

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.5121        | 20.0  | 60   | 1.3011          | 64.8649   | 64.8649 |
| 0.0001        | 40.0  | 120  | 0.7236          | 64.8649   | 64.8649 |
| 0.0           | 60.0  | 180  | 0.7314          | 64.8649   | 64.8649 |
| 0.0           | 80.0  | 240  | 0.7340          | 64.8649   | 64.8649 |
| 0.0           | 100.0 | 300  | 0.7359          | 64.8649   | 64.8649 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1