File size: 2,225 Bytes
69a37cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-base-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: test
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 47.5929
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-samsum
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3776
- Rouge1: 47.5929
- Rouge2: 23.8272
- Rougel: 40.1493
- Rougelsum: 43.7798
- Gen Len: 17.2503
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.4416 | 1.0 | 1842 | 1.3837 | 46.6013 | 23.125 | 39.4894 | 42.9943 | 17.0684 |
| 1.3581 | 2.0 | 3684 | 1.3730 | 47.3142 | 23.5981 | 39.5786 | 43.447 | 17.3675 |
| 1.2781 | 3.0 | 5526 | 1.3739 | 47.5321 | 23.8035 | 40.0555 | 43.7595 | 17.2271 |
| 1.2368 | 4.0 | 7368 | 1.3767 | 47.0944 | 23.2414 | 39.6673 | 43.2155 | 17.2405 |
| 1.1953 | 5.0 | 9210 | 1.3776 | 47.5929 | 23.8272 | 40.1493 | 43.7798 | 17.2503 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.12.1
- Datasets 2.9.0
- Tokenizers 0.13.2
|