|
import torch |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
class ModelHandler: |
|
def __init__(self): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model = AutoModelForSeq2SeqLM.from_pretrained("shaheerzk/text_to_sql") |
|
self.tokenizer = AutoTokenizer.from_pretrained("shaheerzk/text_to_sql") |
|
self.model.to(self.device) |
|
|
|
def handle(self, inputs): |
|
|
|
text = inputs.get("text", "") |
|
inputs = self.tokenizer(text, return_tensors="pt").to(self.device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = self.model.generate(**inputs) |
|
|
|
|
|
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return {"generated_text": generated_text} |
|
|