Llama-3-Korean-20B / README.md
sh2orc's picture
Upload folder using huggingface_hub
6e671ff verified
|
raw
history blame
3.13 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - MLP-KTLim/llama-3-Korean-Bllossom-8B
base_model:
  - MLP-KTLim/llama-3-Korean-Bllossom-8B
  - MLP-KTLim/llama-3-Korean-Bllossom-8B
  - MLP-KTLim/llama-3-Korean-Bllossom-8B
  - MLP-KTLim/llama-3-Korean-Bllossom-8B
  - MLP-KTLim/llama-3-Korean-Bllossom-8B
  - MLP-KTLim/llama-3-Korean-Bllossom-8B
  - MLP-KTLim/llama-3-Korean-Bllossom-8B
  - MLP-KTLim/llama-3-Korean-Bllossom-8B
  - MLP-KTLim/llama-3-Korean-Bllossom-8B

Llama-3-Korean-20240608

Llama-3-Korean-20240608 is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
    - model: MLP-KTLim/llama-3-Korean-Bllossom-8B
      layer_range: [0,9]
  - sources:
    - model: MLP-KTLim/llama-3-Korean-Bllossom-8B
      layer_range: [3,12]
  - sources:
    - model: MLP-KTLim/llama-3-Korean-Bllossom-8B
      layer_range: [5,14]
  - sources:
    - model: MLP-KTLim/llama-3-Korean-Bllossom-8B
      layer_range: [8,17]
  - sources:
    - model: MLP-KTLim/llama-3-Korean-Bllossom-8B
      layer_range: [10,19]
  - sources:
    - model: MLP-KTLim/llama-3-Korean-Bllossom-8B
      layer_range: [13,22]
  - sources:
    - model: MLP-KTLim/llama-3-Korean-Bllossom-8B
      layer_range: [15,24]
  - sources:
    - model: MLP-KTLim/llama-3-Korean-Bllossom-8B
      layer_range: [17,26]
  - sources:
    - model: MLP-KTLim/llama-3-Korean-Bllossom-8B
      layer_range: [20,32]
merge_method: passthrough
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "sh2orc/Llama-3-Korean-20240608"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])