File size: 3,011 Bytes
e9e96b1 729f97c e9e96b1 78001fd e9e96b1 78001fd e9e96b1 78001fd e9e96b1 78001fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import numpy as np
import torch
from typing import NamedTuple, Sequence
from rl_algo_impls.shared.policy.actor_critic import OnPolicy
from rl_algo_impls.shared.trajectory import Trajectory
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnvObs
class RtgAdvantage(NamedTuple):
rewards_to_go: torch.Tensor
advantage: torch.Tensor
def discounted_cumsum(x: np.ndarray, gamma: float) -> np.ndarray:
dc = x.copy()
for i in reversed(range(len(x) - 1)):
dc[i] += gamma * dc[i + 1]
return dc
def compute_advantage_from_trajectories(
trajectories: Sequence[Trajectory],
policy: OnPolicy,
gamma: float,
gae_lambda: float,
device: torch.device,
) -> torch.Tensor:
advantage = []
for traj in trajectories:
last_val = 0
if not traj.terminated and traj.next_obs is not None:
last_val = policy.value(traj.next_obs)
rew = np.append(np.array(traj.rew), last_val)
v = np.append(np.array(traj.v), last_val)
deltas = rew[:-1] + gamma * v[1:] - v[:-1]
advantage.append(discounted_cumsum(deltas, gamma * gae_lambda))
return torch.as_tensor(
np.concatenate(advantage), dtype=torch.float32, device=device
)
def compute_rtg_and_advantage_from_trajectories(
trajectories: Sequence[Trajectory],
policy: OnPolicy,
gamma: float,
gae_lambda: float,
device: torch.device,
) -> RtgAdvantage:
rewards_to_go = []
advantages = []
for traj in trajectories:
last_val = 0
if not traj.terminated and traj.next_obs is not None:
last_val = policy.value(traj.next_obs)
rew = np.append(np.array(traj.rew), last_val)
v = np.append(np.array(traj.v), last_val)
deltas = rew[:-1] + gamma * v[1:] - v[:-1]
adv = discounted_cumsum(deltas, gamma * gae_lambda)
advantages.append(adv)
rewards_to_go.append(v[:-1] + adv)
return RtgAdvantage(
torch.as_tensor(
np.concatenate(rewards_to_go), dtype=torch.float32, device=device
),
torch.as_tensor(np.concatenate(advantages), dtype=torch.float32, device=device),
)
def compute_advantages(
rewards: np.ndarray,
values: np.ndarray,
episode_starts: np.ndarray,
next_episode_starts: np.ndarray,
next_obs: VecEnvObs,
policy: OnPolicy,
gamma: float,
gae_lambda: float,
) -> np.ndarray:
advantages = np.zeros_like(rewards)
last_gae_lam = 0
n_steps = advantages.shape[0]
for t in reversed(range(n_steps)):
if t == n_steps - 1:
next_nonterminal = 1.0 - next_episode_starts
next_value = policy.value(next_obs)
else:
next_nonterminal = 1.0 - episode_starts[t + 1]
next_value = values[t + 1]
delta = rewards[t] + gamma * next_value * next_nonterminal - values[t]
last_gae_lam = delta + gamma * gae_lambda * next_nonterminal * last_gae_lam
advantages[t] = last_gae_lam
return advantages
|