File size: 14,977 Bytes
78001fd
 
 
 
 
e9e96b1
 
 
 
 
 
 
729f97c
78001fd
729f97c
 
 
 
 
 
 
78001fd
 
 
 
 
e9e96b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78001fd
 
729f97c
e9e96b1
 
 
729f97c
e9e96b1
729f97c
 
 
 
 
e9e96b1
 
78001fd
e9e96b1
78001fd
e9e96b1
 
78001fd
 
 
 
 
 
e9e96b1
78001fd
 
e9e96b1
 
 
 
 
 
 
 
78001fd
 
e9e96b1
 
 
78001fd
729f97c
78001fd
 
e9e96b1
78001fd
 
 
 
 
 
 
 
 
 
 
729f97c
 
78001fd
 
 
 
729f97c
78001fd
 
 
 
 
e9e96b1
78001fd
 
e9e96b1
 
78001fd
 
 
e9e96b1
78001fd
 
 
 
 
729f97c
78001fd
 
 
 
729f97c
78001fd
 
 
 
e9e96b1
78001fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e96b1
78001fd
729f97c
e9e96b1
 
78001fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729f97c
78001fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e96b1
78001fd
 
 
 
e9e96b1
78001fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e96b1
78001fd
 
e9e96b1
 
78001fd
 
 
 
 
 
 
 
729f97c
 
 
 
78001fd
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import logging
from dataclasses import asdict, dataclass
from time import perf_counter
from typing import List, NamedTuple, Optional, TypeVar

import numpy as np
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.tensorboard.writer import SummaryWriter

from rl_algo_impls.shared.algorithm import Algorithm
from rl_algo_impls.shared.callbacks import Callback
from rl_algo_impls.shared.gae import compute_advantages
from rl_algo_impls.shared.policy.actor_critic import ActorCritic
from rl_algo_impls.shared.schedule import (
    constant_schedule,
    linear_schedule,
    schedule,
    update_learning_rate,
)
from rl_algo_impls.shared.stats import log_scalars
from rl_algo_impls.wrappers.vectorable_wrapper import (
    VecEnv,
    single_action_space,
    single_observation_space,
)


class TrainStepStats(NamedTuple):
    loss: float
    pi_loss: float
    v_loss: float
    entropy_loss: float
    approx_kl: float
    clipped_frac: float
    val_clipped_frac: float


@dataclass
class TrainStats:
    loss: float
    pi_loss: float
    v_loss: float
    entropy_loss: float
    approx_kl: float
    clipped_frac: float
    val_clipped_frac: float
    explained_var: float

    def __init__(self, step_stats: List[TrainStepStats], explained_var: float) -> None:
        self.loss = np.mean([s.loss for s in step_stats]).item()
        self.pi_loss = np.mean([s.pi_loss for s in step_stats]).item()
        self.v_loss = np.mean([s.v_loss for s in step_stats]).item()
        self.entropy_loss = np.mean([s.entropy_loss for s in step_stats]).item()
        self.approx_kl = np.mean([s.approx_kl for s in step_stats]).item()
        self.clipped_frac = np.mean([s.clipped_frac for s in step_stats]).item()
        self.val_clipped_frac = np.mean([s.val_clipped_frac for s in step_stats]).item()
        self.explained_var = explained_var

    def write_to_tensorboard(self, tb_writer: SummaryWriter, global_step: int) -> None:
        for name, value in asdict(self).items():
            tb_writer.add_scalar(f"losses/{name}", value, global_step=global_step)

    def __repr__(self) -> str:
        return " | ".join(
            [
                f"Loss: {round(self.loss, 2)}",
                f"Pi L: {round(self.pi_loss, 2)}",
                f"V L: {round(self.v_loss, 2)}",
                f"E L: {round(self.entropy_loss, 2)}",
                f"Apx KL Div: {round(self.approx_kl, 2)}",
                f"Clip Frac: {round(self.clipped_frac, 2)}",
                f"Val Clip Frac: {round(self.val_clipped_frac, 2)}",
            ]
        )


PPOSelf = TypeVar("PPOSelf", bound="PPO")


class PPO(Algorithm):
    def __init__(
        self,
        policy: ActorCritic,
        env: VecEnv,
        device: torch.device,
        tb_writer: SummaryWriter,
        learning_rate: float = 3e-4,
        learning_rate_decay: str = "none",
        n_steps: int = 2048,
        batch_size: int = 64,
        n_epochs: int = 10,
        gamma: float = 0.99,
        gae_lambda: float = 0.95,
        clip_range: float = 0.2,
        clip_range_decay: str = "none",
        clip_range_vf: Optional[float] = None,
        clip_range_vf_decay: str = "none",
        normalize_advantage: bool = True,
        ent_coef: float = 0.0,
        ent_coef_decay: str = "none",
        vf_coef: float = 0.5,
        ppo2_vf_coef_halving: bool = False,
        max_grad_norm: float = 0.5,
        sde_sample_freq: int = -1,
        update_advantage_between_epochs: bool = True,
        update_returns_between_epochs: bool = False,
        gamma_end: Optional[float] = None,
    ) -> None:
        super().__init__(policy, env, device, tb_writer)
        self.policy = policy
        self.get_action_mask = getattr(env, "get_action_mask", None)

        self.gamma_schedule = (
            linear_schedule(gamma, gamma_end)
            if gamma_end is not None
            else constant_schedule(gamma)
        )
        self.gae_lambda = gae_lambda
        self.optimizer = Adam(self.policy.parameters(), lr=learning_rate, eps=1e-7)
        self.lr_schedule = schedule(learning_rate_decay, learning_rate)
        self.max_grad_norm = max_grad_norm
        self.clip_range_schedule = schedule(clip_range_decay, clip_range)
        self.clip_range_vf_schedule = None
        if clip_range_vf:
            self.clip_range_vf_schedule = schedule(clip_range_vf_decay, clip_range_vf)

        if normalize_advantage:
            assert (
                env.num_envs * n_steps > 1 and batch_size > 1
            ), f"Each minibatch must be larger than 1 to support normalization"
        self.normalize_advantage = normalize_advantage

        self.ent_coef_schedule = schedule(ent_coef_decay, ent_coef)
        self.vf_coef = vf_coef
        self.ppo2_vf_coef_halving = ppo2_vf_coef_halving

        self.n_steps = n_steps
        self.batch_size = batch_size
        self.n_epochs = n_epochs
        self.sde_sample_freq = sde_sample_freq

        self.update_advantage_between_epochs = update_advantage_between_epochs
        self.update_returns_between_epochs = update_returns_between_epochs

    def learn(
        self: PPOSelf,
        train_timesteps: int,
        callbacks: Optional[List[Callback]] = None,
        total_timesteps: Optional[int] = None,
        start_timesteps: int = 0,
    ) -> PPOSelf:
        if total_timesteps is None:
            total_timesteps = train_timesteps
        assert start_timesteps + train_timesteps <= total_timesteps

        epoch_dim = (self.n_steps, self.env.num_envs)
        step_dim = (self.env.num_envs,)
        obs_space = single_observation_space(self.env)
        act_space = single_action_space(self.env)
        act_shape = self.policy.action_shape

        next_obs = self.env.reset()
        next_action_masks = self.get_action_mask() if self.get_action_mask else None
        next_episode_starts = np.full(step_dim, True, dtype=np.bool_)

        obs = np.zeros(epoch_dim + obs_space.shape, dtype=obs_space.dtype)  # type: ignore
        actions = np.zeros(epoch_dim + act_shape, dtype=act_space.dtype)  # type: ignore
        rewards = np.zeros(epoch_dim, dtype=np.float32)
        episode_starts = np.zeros(epoch_dim, dtype=np.bool_)
        values = np.zeros(epoch_dim, dtype=np.float32)
        logprobs = np.zeros(epoch_dim, dtype=np.float32)
        action_masks = (
            np.zeros(
                (self.n_steps,) + next_action_masks.shape, dtype=next_action_masks.dtype
            )
            if next_action_masks is not None
            else None
        )

        timesteps_elapsed = start_timesteps
        while timesteps_elapsed < start_timesteps + train_timesteps:
            start_time = perf_counter()

            progress = timesteps_elapsed / total_timesteps
            ent_coef = self.ent_coef_schedule(progress)
            learning_rate = self.lr_schedule(progress)
            update_learning_rate(self.optimizer, learning_rate)
            pi_clip = self.clip_range_schedule(progress)
            gamma = self.gamma_schedule(progress)
            chart_scalars = {
                "learning_rate": self.optimizer.param_groups[0]["lr"],
                "ent_coef": ent_coef,
                "pi_clip": pi_clip,
                "gamma": gamma,
            }
            if self.clip_range_vf_schedule:
                v_clip = self.clip_range_vf_schedule(progress)
                chart_scalars["v_clip"] = v_clip
            else:
                v_clip = None
            log_scalars(self.tb_writer, "charts", chart_scalars, timesteps_elapsed)

            self.policy.eval()
            self.policy.reset_noise()
            for s in range(self.n_steps):
                timesteps_elapsed += self.env.num_envs
                if self.sde_sample_freq > 0 and s > 0 and s % self.sde_sample_freq == 0:
                    self.policy.reset_noise()

                obs[s] = next_obs
                episode_starts[s] = next_episode_starts
                if action_masks is not None:
                    action_masks[s] = next_action_masks

                (
                    actions[s],
                    values[s],
                    logprobs[s],
                    clamped_action,
                ) = self.policy.step(next_obs, action_masks=next_action_masks)
                next_obs, rewards[s], next_episode_starts, _ = self.env.step(
                    clamped_action
                )
                next_action_masks = (
                    self.get_action_mask() if self.get_action_mask else None
                )

            self.policy.train()

            b_obs = torch.tensor(obs.reshape((-1,) + obs_space.shape)).to(self.device)  # type: ignore
            b_actions = torch.tensor(actions.reshape((-1,) + act_shape)).to(  # type: ignore
                self.device
            )
            b_logprobs = torch.tensor(logprobs.reshape(-1)).to(self.device)
            b_action_masks = (
                torch.tensor(action_masks.reshape((-1,) + next_action_masks.shape[1:])).to(  # type: ignore
                    self.device
                )
                if action_masks is not None
                else None
            )

            y_pred = values.reshape(-1)
            b_values = torch.tensor(y_pred).to(self.device)

            step_stats = []
            # Define variables that will definitely be set through the first epoch
            advantages: np.ndarray = None  # type: ignore
            b_advantages: torch.Tensor = None  # type: ignore
            y_true: np.ndarray = None  # type: ignore
            b_returns: torch.Tensor = None  # type: ignore
            for e in range(self.n_epochs):
                if e == 0 or self.update_advantage_between_epochs:
                    advantages = compute_advantages(
                        rewards,
                        values,
                        episode_starts,
                        next_episode_starts,
                        next_obs,
                        self.policy,
                        gamma,
                        self.gae_lambda,
                    )
                    b_advantages = torch.tensor(advantages.reshape(-1)).to(self.device)
                if e == 0 or self.update_returns_between_epochs:
                    returns = advantages + values
                    y_true = returns.reshape(-1)
                    b_returns = torch.tensor(y_true).to(self.device)

                b_idxs = torch.randperm(len(b_obs))
                # Only record last epoch's stats
                step_stats.clear()
                for i in range(0, len(b_obs), self.batch_size):
                    self.policy.reset_noise(self.batch_size)

                    mb_idxs = b_idxs[i : i + self.batch_size]

                    mb_obs = b_obs[mb_idxs]
                    mb_actions = b_actions[mb_idxs]
                    mb_values = b_values[mb_idxs]
                    mb_logprobs = b_logprobs[mb_idxs]
                    mb_action_masks = (
                        b_action_masks[mb_idxs] if b_action_masks is not None else None
                    )

                    mb_adv = b_advantages[mb_idxs]
                    if self.normalize_advantage:
                        mb_adv = (mb_adv - mb_adv.mean()) / (mb_adv.std() + 1e-8)
                    mb_returns = b_returns[mb_idxs]

                    new_logprobs, entropy, new_values = self.policy(
                        mb_obs, mb_actions, action_masks=mb_action_masks
                    )

                    logratio = new_logprobs - mb_logprobs
                    ratio = torch.exp(logratio)
                    clipped_ratio = torch.clamp(ratio, min=1 - pi_clip, max=1 + pi_clip)
                    pi_loss = torch.max(-ratio * mb_adv, -clipped_ratio * mb_adv).mean()

                    v_loss_unclipped = (new_values - mb_returns) ** 2
                    if v_clip:
                        v_loss_clipped = (
                            mb_values
                            + torch.clamp(new_values - mb_values, -v_clip, v_clip)
                            - mb_returns
                        ) ** 2
                        v_loss = torch.max(v_loss_unclipped, v_loss_clipped).mean()
                    else:
                        v_loss = v_loss_unclipped.mean()

                    if self.ppo2_vf_coef_halving:
                        v_loss *= 0.5

                    entropy_loss = -entropy.mean()

                    loss = pi_loss + ent_coef * entropy_loss + self.vf_coef * v_loss

                    self.optimizer.zero_grad()
                    loss.backward()
                    nn.utils.clip_grad_norm_(
                        self.policy.parameters(), self.max_grad_norm
                    )
                    self.optimizer.step()

                    with torch.no_grad():
                        approx_kl = ((ratio - 1) - logratio).mean().cpu().numpy().item()
                        clipped_frac = (
                            ((ratio - 1).abs() > pi_clip)
                            .float()
                            .mean()
                            .cpu()
                            .numpy()
                            .item()
                        )
                        val_clipped_frac = (
                            ((new_values - mb_values).abs() > v_clip)
                            .float()
                            .mean()
                            .cpu()
                            .numpy()
                            .item()
                            if v_clip
                            else 0
                        )

                    step_stats.append(
                        TrainStepStats(
                            loss.item(),
                            pi_loss.item(),
                            v_loss.item(),
                            entropy_loss.item(),
                            approx_kl,
                            clipped_frac,
                            val_clipped_frac,
                        )
                    )

            var_y = np.var(y_true).item()
            explained_var = (
                np.nan if var_y == 0 else 1 - np.var(y_true - y_pred).item() / var_y
            )
            TrainStats(step_stats, explained_var).write_to_tensorboard(
                self.tb_writer, timesteps_elapsed
            )

            end_time = perf_counter()
            rollout_steps = self.n_steps * self.env.num_envs
            self.tb_writer.add_scalar(
                "train/steps_per_second",
                rollout_steps / (end_time - start_time),
                timesteps_elapsed,
            )

            if callbacks:
                if not all(
                    c.on_step(timesteps_elapsed=rollout_steps) for c in callbacks
                ):
                    logging.info(
                        f"Callback terminated training at {timesteps_elapsed} timesteps"
                    )
                    break

        return self