File size: 7,721 Bytes
8bf4dee
0e936e1
 
8bf4dee
0e936e1
8bf4dee
 
 
0e936e1
 
 
8bf4dee
 
 
 
 
 
 
0e936e1
 
 
 
 
 
 
 
 
8bf4dee
0e936e1
8bf4dee
 
 
 
 
0e936e1
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
 
0e936e1
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e936e1
 
 
b638440
 
8bf4dee
 
0e936e1
8bf4dee
 
 
 
0e936e1
8bf4dee
0e936e1
8bf4dee
0e936e1
 
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e936e1
8bf4dee
 
 
 
 
 
 
 
 
 
 
0e936e1
8bf4dee
 
 
0e936e1
8bf4dee
 
0e936e1
8bf4dee
 
0e936e1
 
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e936e1
 
 
 
8bf4dee
 
 
 
 
 
0e936e1
 
8bf4dee
0e936e1
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
0e936e1
8bf4dee
 
 
 
 
 
 
 
 
 
0e936e1
 
 
 
8bf4dee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
from dataclasses import astuple
from typing import Callable, Optional

import gym
from gym.vector.async_vector_env import AsyncVectorEnv
from gym.vector.sync_vector_env import SyncVectorEnv
from gym.wrappers.frame_stack import FrameStack
from gym.wrappers.gray_scale_observation import GrayScaleObservation
from gym.wrappers.resize_observation import ResizeObservation
from stable_baselines3.common.atari_wrappers import MaxAndSkipEnv, NoopResetEnv
from stable_baselines3.common.vec_env.dummy_vec_env import DummyVecEnv
from stable_baselines3.common.vec_env.subproc_vec_env import SubprocVecEnv
from stable_baselines3.common.vec_env.vec_normalize import VecNormalize
from torch.utils.tensorboard.writer import SummaryWriter

from rl_algo_impls.runner.config import Config, EnvHyperparams
from rl_algo_impls.shared.policy.policy import VEC_NORMALIZE_FILENAME
from rl_algo_impls.shared.vec_env.utils import (
    import_for_env_id,
    is_atari,
    is_bullet_env,
    is_car_racing,
    is_gym_procgen,
    is_microrts,
)
from rl_algo_impls.wrappers.action_mask_wrapper import SingleActionMaskWrapper
from rl_algo_impls.wrappers.atari_wrappers import (
    ClipRewardEnv,
    EpisodicLifeEnv,
    FireOnLifeStarttEnv,
)
from rl_algo_impls.wrappers.episode_record_video import EpisodeRecordVideo
from rl_algo_impls.wrappers.episode_stats_writer import EpisodeStatsWriter
from rl_algo_impls.wrappers.hwc_to_chw_observation import HwcToChwObservation
from rl_algo_impls.wrappers.initial_step_truncate_wrapper import (
    InitialStepTruncateWrapper,
)
from rl_algo_impls.wrappers.is_vector_env import IsVectorEnv
from rl_algo_impls.wrappers.no_reward_timeout import NoRewardTimeout
from rl_algo_impls.wrappers.noop_env_seed import NoopEnvSeed
from rl_algo_impls.wrappers.normalize import NormalizeObservation, NormalizeReward
from rl_algo_impls.wrappers.sync_vector_env_render_compat import (
    SyncVectorEnvRenderCompat,
)
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv
from rl_algo_impls.wrappers.video_compat_wrapper import VideoCompatWrapper


def make_vec_env(
    config: Config,
    hparams: EnvHyperparams,
    training: bool = True,
    render: bool = False,
    normalize_load_path: Optional[str] = None,
    tb_writer: Optional[SummaryWriter] = None,
) -> VecEnv:
    (
        env_type,
        n_envs,
        frame_stack,
        make_kwargs,
        no_reward_timeout_steps,
        no_reward_fire_steps,
        vec_env_class,
        normalize,
        normalize_kwargs,
        rolling_length,
        train_record_video,
        video_step_interval,
        initial_steps_to_truncate,
        clip_atari_rewards,
        normalize_type,
        mask_actions,
        _,  # bots
        _,  # self_play_kwargs
        _,  # selfplay_bots
    ) = astuple(hparams)

    import_for_env_id(config.env_id)

    seed = config.seed(training=training)

    make_kwargs = make_kwargs.copy() if make_kwargs is not None else {}
    if is_bullet_env(config) and render:
        make_kwargs["render"] = True
    if is_car_racing(config):
        make_kwargs["verbose"] = 0
    if is_gym_procgen(config) and not render:
        make_kwargs["render_mode"] = "rgb_array"

    def make(idx: int) -> Callable[[], gym.Env]:
        def _make() -> gym.Env:
            env = gym.make(config.env_id, **make_kwargs)
            env = gym.wrappers.RecordEpisodeStatistics(env)
            env = VideoCompatWrapper(env)
            if training and train_record_video and idx == 0:
                env = EpisodeRecordVideo(
                    env,
                    config.video_prefix,
                    step_increment=n_envs,
                    video_step_interval=int(video_step_interval),
                )
            if training and initial_steps_to_truncate:
                env = InitialStepTruncateWrapper(
                    env, idx * initial_steps_to_truncate // n_envs
                )
            if is_atari(config):  # type: ignore
                env = NoopResetEnv(env, noop_max=30)
                env = MaxAndSkipEnv(env, skip=4)
                env = EpisodicLifeEnv(env, training=training)
                action_meanings = env.unwrapped.get_action_meanings()
                if "FIRE" in action_meanings:  # type: ignore
                    env = FireOnLifeStarttEnv(env, action_meanings.index("FIRE"))
                if clip_atari_rewards:
                    env = ClipRewardEnv(env, training=training)
                env = ResizeObservation(env, (84, 84))
                env = GrayScaleObservation(env, keep_dim=False)
                env = FrameStack(env, frame_stack)
            elif is_car_racing(config):
                env = ResizeObservation(env, (64, 64))
                env = GrayScaleObservation(env, keep_dim=False)
                env = FrameStack(env, frame_stack)
            elif is_gym_procgen(config):
                # env = GrayScaleObservation(env, keep_dim=False)
                env = NoopEnvSeed(env)
                env = HwcToChwObservation(env)
                if frame_stack > 1:
                    env = FrameStack(env, frame_stack)
            elif is_microrts(config):
                env = HwcToChwObservation(env)

            if no_reward_timeout_steps:
                env = NoRewardTimeout(
                    env, no_reward_timeout_steps, n_fire_steps=no_reward_fire_steps
                )

            if seed is not None:
                env.seed(seed + idx)
                env.action_space.seed(seed + idx)
                env.observation_space.seed(seed + idx)

            return env

        return _make

    if env_type == "sb3vec":
        VecEnvClass = {"sync": DummyVecEnv, "async": SubprocVecEnv}[vec_env_class]
    elif env_type == "gymvec":
        VecEnvClass = {"sync": SyncVectorEnv, "async": AsyncVectorEnv}[vec_env_class]
    else:
        raise ValueError(f"env_type {env_type} unsupported")
    envs = VecEnvClass([make(i) for i in range(n_envs)])
    if env_type == "gymvec" and vec_env_class == "sync":
        envs = SyncVectorEnvRenderCompat(envs)
    if env_type == "sb3vec":
        envs = IsVectorEnv(envs)
    if mask_actions:
        envs = SingleActionMaskWrapper(envs)
    if training:
        assert tb_writer
        envs = EpisodeStatsWriter(
            envs, tb_writer, training=training, rolling_length=rolling_length
        )
    if normalize:
        if normalize_type is None:
            normalize_type = "sb3" if env_type == "sb3vec" else "gymlike"
        normalize_kwargs = normalize_kwargs or {}
        if normalize_type == "sb3":
            if normalize_load_path:
                envs = VecNormalize.load(
                    os.path.join(normalize_load_path, VEC_NORMALIZE_FILENAME),
                    envs,  # type: ignore
                )
            else:
                envs = VecNormalize(
                    envs,  # type: ignore
                    training=training,
                    **normalize_kwargs,
                )
            if not training:
                envs.norm_reward = False
        elif normalize_type == "gymlike":
            if normalize_kwargs.get("norm_obs", True):
                envs = NormalizeObservation(
                    envs, training=training, clip=normalize_kwargs.get("clip_obs", 10.0)
                )
            if training and normalize_kwargs.get("norm_reward", True):
                envs = NormalizeReward(
                    envs,
                    training=training,
                    clip=normalize_kwargs.get("clip_reward", 10.0),
                )
        else:
            raise ValueError(
                f"normalize_type {normalize_type} not supported (sb3 or gymlike)"
            )
    return envs