File size: 6,731 Bytes
0e936e1
 
8bf4dee
 
0e936e1
8bf4dee
0e936e1
b638440
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e936e1
 
8bf4dee
 
 
 
 
 
 
 
 
0e936e1
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e936e1
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e936e1
 
 
 
 
 
 
 
 
8bf4dee
b638440
8bf4dee
 
 
 
 
 
 
 
0e936e1
 
 
8bf4dee
b638440
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from typing import Optional, Tuple, Type, TypeVar, Union

import torch
import torch.nn as nn
from torch.distributions import Distribution, Normal

from rl_algo_impls.shared.actor.actor import Actor, PiForward
from rl_algo_impls.shared.module.utils import mlp


class TanhBijector:
    def __init__(self, epsilon: float = 1e-6) -> None:
        self.epsilon = epsilon

    @staticmethod
    def forward(x: torch.Tensor) -> torch.Tensor:
        return torch.tanh(x)

    @staticmethod
    def inverse(y: torch.Tensor) -> torch.Tensor:
        eps = torch.finfo(y.dtype).eps
        clamped_y = y.clamp(min=-1.0 + eps, max=1.0 - eps)
        return torch.atanh(clamped_y)

    def log_prob_correction(self, x: torch.Tensor) -> torch.Tensor:
        return torch.log(1.0 - torch.tanh(x) ** 2 + self.epsilon)


def sum_independent_dims(tensor: torch.Tensor) -> torch.Tensor:
    if len(tensor.shape) > 1:
        return tensor.sum(dim=1)
    return tensor.sum()


class StateDependentNoiseDistribution(Normal):
    def __init__(
        self,
        loc,
        scale,
        latent_sde: torch.Tensor,
        exploration_mat: torch.Tensor,
        exploration_matrices: torch.Tensor,
        bijector: Optional[TanhBijector] = None,
        validate_args=None,
    ):
        super().__init__(loc, scale, validate_args)
        self.latent_sde = latent_sde
        self.exploration_mat = exploration_mat
        self.exploration_matrices = exploration_matrices
        self.bijector = bijector

    def log_prob(self, a: torch.Tensor) -> torch.Tensor:
        gaussian_a = self.bijector.inverse(a) if self.bijector else a
        log_prob = sum_independent_dims(super().log_prob(gaussian_a))
        if self.bijector:
            log_prob -= torch.sum(self.bijector.log_prob_correction(gaussian_a), dim=1)
        return log_prob

    def sample(self) -> torch.Tensor:
        noise = self._get_noise()
        actions = self.mean + noise
        return self.bijector.forward(actions) if self.bijector else actions

    def _get_noise(self) -> torch.Tensor:
        if len(self.latent_sde) == 1 or len(self.latent_sde) != len(
            self.exploration_matrices
        ):
            return torch.mm(self.latent_sde, self.exploration_mat)
        # (batch_size, n_features) -> (batch_size, 1, n_features)
        latent_sde = self.latent_sde.unsqueeze(dim=1)
        # (batch_size, 1, n_actions)
        noise = torch.bmm(latent_sde, self.exploration_matrices)
        return noise.squeeze(dim=1)

    @property
    def mode(self) -> torch.Tensor:
        mean = super().mode
        return self.bijector.forward(mean) if self.bijector else mean


StateDependentNoiseActorHeadSelf = TypeVar(
    "StateDependentNoiseActorHeadSelf", bound="StateDependentNoiseActorHead"
)


class StateDependentNoiseActorHead(Actor):
    def __init__(
        self,
        act_dim: int,
        in_dim: int,
        hidden_sizes: Tuple[int, ...] = (32,),
        activation: Type[nn.Module] = nn.Tanh,
        init_layers_orthogonal: bool = True,
        log_std_init: float = -0.5,
        full_std: bool = True,
        squash_output: bool = False,
        learn_std: bool = False,
    ) -> None:
        super().__init__()
        self.act_dim = act_dim
        layer_sizes = (in_dim,) + hidden_sizes + (act_dim,)
        if len(layer_sizes) == 2:
            self.latent_net = nn.Identity()
        elif len(layer_sizes) > 2:
            self.latent_net = mlp(
                layer_sizes[:-1],
                activation,
                output_activation=activation,
                init_layers_orthogonal=init_layers_orthogonal,
            )
        self.mu_net = mlp(
            layer_sizes[-2:],
            activation,
            init_layers_orthogonal=init_layers_orthogonal,
            final_layer_gain=0.01,
        )
        self.full_std = full_std
        std_dim = (layer_sizes[-2], act_dim if self.full_std else 1)
        self.log_std = nn.Parameter(
            torch.ones(std_dim, dtype=torch.float32) * log_std_init
        )
        self.bijector = TanhBijector() if squash_output else None
        self.learn_std = learn_std
        self.device = None

        self.exploration_mat = None
        self.exploration_matrices = None
        self.sample_weights()

    def to(
        self: StateDependentNoiseActorHeadSelf,
        device: Optional[torch.device] = None,
        dtype: Optional[Union[torch.dtype, str]] = None,
        non_blocking: bool = False,
    ) -> StateDependentNoiseActorHeadSelf:
        super().to(device, dtype, non_blocking)
        self.device = device
        return self

    def _distribution(self, obs: torch.Tensor) -> Distribution:
        latent = self.latent_net(obs)
        mu = self.mu_net(latent)
        latent_sde = latent if self.learn_std else latent.detach()
        variance = torch.mm(latent_sde**2, self._get_std() ** 2)
        assert self.exploration_mat is not None
        assert self.exploration_matrices is not None
        return StateDependentNoiseDistribution(
            mu,
            torch.sqrt(variance + 1e-6),
            latent_sde,
            self.exploration_mat,
            self.exploration_matrices,
            self.bijector,
        )

    def _get_std(self) -> torch.Tensor:
        std = torch.exp(self.log_std)
        if self.full_std:
            return std
        ones = torch.ones(self.log_std.shape[0], self.act_dim)
        if self.device:
            ones = ones.to(self.device)
        return ones * std

    def forward(
        self,
        obs: torch.Tensor,
        actions: Optional[torch.Tensor] = None,
        action_masks: Optional[torch.Tensor] = None,
    ) -> PiForward:
        assert (
            not action_masks
        ), f"{self.__class__.__name__} does not support action_masks"
        pi = self._distribution(obs)
        return pi_forward(pi, actions, self.bijector)

    def sample_weights(self, batch_size: int = 1) -> None:
        std = self._get_std()
        weights_dist = Normal(torch.zeros_like(std), std)
        # Reparametrization trick to pass gradients
        self.exploration_mat = weights_dist.rsample()
        self.exploration_matrices = weights_dist.rsample(torch.Size((batch_size,)))

    @property
    def action_shape(self) -> Tuple[int, ...]:
        return (self.act_dim,)


def pi_forward(
    distribution: Distribution,
    actions: Optional[torch.Tensor] = None,
    bijector: Optional[TanhBijector] = None,
) -> PiForward:
    logp_a = None
    entropy = None
    if actions is not None:
        logp_a = distribution.log_prob(actions)
        entropy = -logp_a if bijector else sum_independent_dims(distribution.entropy())
    return PiForward(distribution, logp_a, entropy)