File size: 1,265 Bytes
0e936e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from typing import Optional, Type
import gym
import torch
import torch.nn as nn
from rl_algo_impls.shared.encoder.cnn import FlattenedCnnEncoder
from rl_algo_impls.shared.module.module import layer_init
class MicrortsCnn(FlattenedCnnEncoder):
"""
Base CNN architecture for Gym-MicroRTS
"""
def __init__(
self,
obs_space: gym.Space,
activation: Type[nn.Module],
cnn_init_layers_orthogonal: Optional[bool],
linear_init_layers_orthogonal: bool,
cnn_flatten_dim: int,
**kwargs,
) -> None:
if cnn_init_layers_orthogonal is None:
cnn_init_layers_orthogonal = True
in_channels = obs_space.shape[0] # type: ignore
cnn = nn.Sequential(
layer_init(
nn.Conv2d(in_channels, 16, kernel_size=3, stride=2),
cnn_init_layers_orthogonal,
),
activation(),
layer_init(nn.Conv2d(16, 32, kernel_size=2), cnn_init_layers_orthogonal),
activation(),
nn.Flatten(),
)
super().__init__(
obs_space,
activation,
linear_init_layers_orthogonal,
cnn_flatten_dim,
cnn,
**kwargs,
)
|