File size: 8,772 Bytes
35bb3c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gym
import numpy as np
import os
from gym.wrappers.resize_observation import ResizeObservation
from gym.wrappers.gray_scale_observation import GrayScaleObservation
from gym.wrappers.frame_stack import FrameStack
from procgen.env import ProcgenEnv
from stable_baselines3.common.atari_wrappers import (
MaxAndSkipEnv,
NoopResetEnv,
)
from stable_baselines3.common.vec_env.base_vec_env import VecEnv
from stable_baselines3.common.vec_env.dummy_vec_env import DummyVecEnv
from stable_baselines3.common.vec_env.subproc_vec_env import SubprocVecEnv
from stable_baselines3.common.vec_env.vec_normalize import VecNormalize
from torch.utils.tensorboard.writer import SummaryWriter
from typing import Callable, Optional, Union
from runner.config import Config, EnvHyperparams
from shared.policy.policy import VEC_NORMALIZE_FILENAME
from wrappers.atari_wrappers import EpisodicLifeEnv, FireOnLifeStarttEnv, ClipRewardEnv
from wrappers.episode_record_video import EpisodeRecordVideo
from wrappers.episode_stats_writer import EpisodeStatsWriter
from wrappers.get_rgb_observation import GetRgbObservation
from wrappers.initial_step_truncate_wrapper import InitialStepTruncateWrapper
from wrappers.is_vector_env import IsVectorEnv
from wrappers.noop_env_seed import NoopEnvSeed
from wrappers.transpose_image_observation import TransposeImageObservation
from wrappers.video_compat_wrapper import VideoCompatWrapper
GeneralVecEnv = Union[VecEnv, gym.vector.VectorEnv, gym.Wrapper]
def make_env(
config: Config,
hparams: EnvHyperparams,
training: bool = True,
render: bool = False,
normalize_load_path: Optional[str] = None,
tb_writer: Optional[SummaryWriter] = None,
) -> GeneralVecEnv:
if hparams.is_procgen:
return _make_procgen_env(
config,
hparams,
training=training,
render=render,
normalize_load_path=normalize_load_path,
tb_writer=tb_writer,
)
else:
return _make_vec_env(
config,
hparams,
training=training,
render=render,
normalize_load_path=normalize_load_path,
tb_writer=tb_writer,
)
def make_eval_env(
config: Config,
hparams: EnvHyperparams,
override_n_envs: Optional[int] = None,
**kwargs
) -> GeneralVecEnv:
kwargs = kwargs.copy()
kwargs["training"] = False
if override_n_envs is not None:
hparams_kwargs = hparams._asdict()
hparams_kwargs["n_envs"] = override_n_envs
if override_n_envs == 1:
hparams_kwargs["vec_env_class"] = "dummy"
hparams = EnvHyperparams(**hparams_kwargs)
return make_env(config, hparams, **kwargs)
def _make_vec_env(
config: Config,
hparams: EnvHyperparams,
training: bool = True,
render: bool = False,
normalize_load_path: Optional[str] = None,
tb_writer: Optional[SummaryWriter] = None,
) -> GeneralVecEnv:
(
_,
n_envs,
frame_stack,
make_kwargs,
no_reward_timeout_steps,
no_reward_fire_steps,
vec_env_class,
normalize,
normalize_kwargs,
rolling_length,
train_record_video,
video_step_interval,
initial_steps_to_truncate,
) = hparams
if "BulletEnv" in config.env_id:
import pybullet_envs
spec = gym.spec(config.env_id)
seed = config.seed(training=training)
def make(idx: int) -> Callable[[], gym.Env]:
env_kwargs = make_kwargs.copy() if make_kwargs is not None else {}
if "BulletEnv" in config.env_id and render:
env_kwargs["render"] = True
if "CarRacing" in config.env_id:
env_kwargs["verbose"] = 0
if "procgen" in config.env_id:
if not render:
env_kwargs["render_mode"] = "rgb_array"
def _make() -> gym.Env:
env = gym.make(config.env_id, **env_kwargs)
env = gym.wrappers.RecordEpisodeStatistics(env)
env = VideoCompatWrapper(env)
if training and train_record_video and idx == 0:
env = EpisodeRecordVideo(
env,
config.video_prefix,
step_increment=n_envs,
video_step_interval=int(video_step_interval),
)
if training and initial_steps_to_truncate:
env = InitialStepTruncateWrapper(
env, idx * initial_steps_to_truncate // n_envs
)
if "AtariEnv" in spec.entry_point: # type: ignore
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
env = EpisodicLifeEnv(env, training=training)
action_meanings = env.unwrapped.get_action_meanings()
if "FIRE" in action_meanings: # type: ignore
env = FireOnLifeStarttEnv(env, action_meanings.index("FIRE"))
env = ClipRewardEnv(env, training=training)
env = ResizeObservation(env, (84, 84))
env = GrayScaleObservation(env, keep_dim=False)
env = FrameStack(env, frame_stack)
elif "CarRacing" in config.env_id:
env = ResizeObservation(env, (64, 64))
env = GrayScaleObservation(env, keep_dim=False)
env = FrameStack(env, frame_stack)
elif "procgen" in config.env_id:
# env = GrayScaleObservation(env, keep_dim=False)
env = NoopEnvSeed(env)
env = TransposeImageObservation(env)
if frame_stack > 1:
env = FrameStack(env, frame_stack)
if no_reward_timeout_steps:
from wrappers.no_reward_timeout import NoRewardTimeout
env = NoRewardTimeout(
env, no_reward_timeout_steps, n_fire_steps=no_reward_fire_steps
)
if seed is not None:
env.seed(seed + idx)
env.action_space.seed(seed + idx)
env.observation_space.seed(seed + idx)
return env
return _make
VecEnvClass = {"dummy": DummyVecEnv, "subproc": SubprocVecEnv}[vec_env_class]
venv = VecEnvClass([make(i) for i in range(n_envs)])
if training:
assert tb_writer
venv = EpisodeStatsWriter(
venv, tb_writer, training=training, rolling_length=rolling_length
)
if normalize:
if normalize_load_path:
venv = VecNormalize.load(
os.path.join(normalize_load_path, VEC_NORMALIZE_FILENAME),
venv, # type: ignore
)
else:
venv = VecNormalize(
venv, # type: ignore
training=training,
**(normalize_kwargs or {}),
)
if not training:
venv.norm_reward = False
return venv
def _make_procgen_env(
config: Config,
hparams: EnvHyperparams,
training: bool = True,
render: bool = False,
normalize_load_path: Optional[str] = None,
tb_writer: Optional[SummaryWriter] = None,
) -> GeneralVecEnv:
(
_,
n_envs,
frame_stack,
make_kwargs,
_, # no_reward_timeout_steps
_, # no_reward_fire_steps
_, # vec_env_class
normalize,
normalize_kwargs,
rolling_length,
_, # train_record_video
_, # video_step_interval
_, # initial_steps_to_truncate
) = hparams
seed = config.seed(training=training)
make_kwargs = make_kwargs or {}
if not render:
make_kwargs["render_mode"] = "rgb_array"
if seed is not None:
make_kwargs["rand_seed"] = seed
envs = ProcgenEnv(n_envs, config.env_id, **make_kwargs)
envs = IsVectorEnv(envs)
envs = GetRgbObservation(envs)
# TODO: Handle Grayscale and/or FrameStack
envs = TransposeImageObservation(envs)
envs = gym.wrappers.RecordEpisodeStatistics(envs)
if seed is not None:
envs.action_space.seed(seed)
envs.observation_space.seed(seed)
if training:
assert tb_writer
envs = EpisodeStatsWriter(
envs, tb_writer, training=training, rolling_length=rolling_length
)
if normalize and training:
normalize_kwargs = normalize_kwargs or {}
# TODO: Handle reward stats saving/loading/syncing, but it's only important
# for checkpointing
envs = gym.wrappers.NormalizeReward(envs)
clip_obs = normalize_kwargs.get("clip_reward", 10.0)
envs = gym.wrappers.TransformReward(
envs, lambda r: np.clip(r, -clip_obs, clip_obs)
)
return envs
|