File size: 7,586 Bytes
b18ddcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from time import perf_counter
from torch.utils.tensorboard.writer import SummaryWriter
from typing import Optional, TypeVar

from rl_algo_impls.shared.algorithm import Algorithm
from rl_algo_impls.shared.callbacks.callback import Callback
from rl_algo_impls.shared.policy.on_policy import ActorCritic
from rl_algo_impls.shared.schedule import schedule, update_learning_rate
from rl_algo_impls.shared.stats import log_scalars
from rl_algo_impls.wrappers.vectorable_wrapper import (
    VecEnv,
    single_observation_space,
    single_action_space,
)

A2CSelf = TypeVar("A2CSelf", bound="A2C")


class A2C(Algorithm):
    def __init__(
        self,
        policy: ActorCritic,
        env: VecEnv,
        device: torch.device,
        tb_writer: SummaryWriter,
        learning_rate: float = 7e-4,
        learning_rate_decay: str = "none",
        n_steps: int = 5,
        gamma: float = 0.99,
        gae_lambda: float = 1.0,
        ent_coef: float = 0.0,
        ent_coef_decay: str = "none",
        vf_coef: float = 0.5,
        max_grad_norm: float = 0.5,
        rms_prop_eps: float = 1e-5,
        use_rms_prop: bool = True,
        sde_sample_freq: int = -1,
        normalize_advantage: bool = False,
    ) -> None:
        super().__init__(policy, env, device, tb_writer)
        self.policy = policy

        self.lr_schedule = schedule(learning_rate_decay, learning_rate)
        if use_rms_prop:
            self.optimizer = torch.optim.RMSprop(
                policy.parameters(), lr=learning_rate, eps=rms_prop_eps
            )
        else:
            self.optimizer = torch.optim.Adam(policy.parameters(), lr=learning_rate)

        self.n_steps = n_steps

        self.gamma = gamma
        self.gae_lambda = gae_lambda

        self.vf_coef = vf_coef
        self.ent_coef_schedule = schedule(ent_coef_decay, ent_coef)
        self.max_grad_norm = max_grad_norm

        self.sde_sample_freq = sde_sample_freq
        self.normalize_advantage = normalize_advantage

    def learn(
        self: A2CSelf,
        train_timesteps: int,
        callback: Optional[Callback] = None,
        total_timesteps: Optional[int] = None,
        start_timesteps: int = 0,
    ) -> A2CSelf:
        if total_timesteps is None:
            total_timesteps = train_timesteps
        assert start_timesteps + train_timesteps <= total_timesteps
        epoch_dim = (self.n_steps, self.env.num_envs)
        step_dim = (self.env.num_envs,)
        obs_space = single_observation_space(self.env)
        act_space = single_action_space(self.env)

        obs = np.zeros(epoch_dim + obs_space.shape, dtype=obs_space.dtype)
        actions = np.zeros(epoch_dim + act_space.shape, dtype=act_space.dtype)
        rewards = np.zeros(epoch_dim, dtype=np.float32)
        episode_starts = np.zeros(epoch_dim, dtype=np.byte)
        values = np.zeros(epoch_dim, dtype=np.float32)
        logprobs = np.zeros(epoch_dim, dtype=np.float32)

        next_obs = self.env.reset()
        next_episode_starts = np.ones(step_dim, dtype=np.byte)

        timesteps_elapsed = start_timesteps
        while timesteps_elapsed < start_timesteps + train_timesteps:
            start_time = perf_counter()

            progress = timesteps_elapsed / total_timesteps
            ent_coef = self.ent_coef_schedule(progress)
            learning_rate = self.lr_schedule(progress)
            update_learning_rate(self.optimizer, learning_rate)
            log_scalars(
                self.tb_writer,
                "charts",
                {
                    "ent_coef": ent_coef,
                    "learning_rate": learning_rate,
                },
                timesteps_elapsed,
            )

            self.policy.eval()
            self.policy.reset_noise()
            for s in range(self.n_steps):
                timesteps_elapsed += self.env.num_envs
                if self.sde_sample_freq > 0 and s > 0 and s % self.sde_sample_freq == 0:
                    self.policy.reset_noise()

                obs[s] = next_obs
                episode_starts[s] = next_episode_starts

                actions[s], values[s], logprobs[s], clamped_action = self.policy.step(
                    next_obs
                )
                next_obs, rewards[s], next_episode_starts, _ = self.env.step(
                    clamped_action
                )

            advantages = np.zeros(epoch_dim, dtype=np.float32)
            last_gae_lam = 0
            for t in reversed(range(self.n_steps)):
                if t == self.n_steps - 1:
                    next_nonterminal = 1.0 - next_episode_starts
                    next_value = self.policy.value(next_obs)
                else:
                    next_nonterminal = 1.0 - episode_starts[t + 1]
                    next_value = values[t + 1]
                delta = (
                    rewards[t] + self.gamma * next_value * next_nonterminal - values[t]
                )
                last_gae_lam = (
                    delta
                    + self.gamma * self.gae_lambda * next_nonterminal * last_gae_lam
                )
                advantages[t] = last_gae_lam
            returns = advantages + values

            b_obs = torch.tensor(obs.reshape((-1,) + obs_space.shape)).to(self.device)
            b_actions = torch.tensor(actions.reshape((-1,) + act_space.shape)).to(
                self.device
            )
            b_advantages = torch.tensor(advantages.reshape(-1)).to(self.device)
            b_returns = torch.tensor(returns.reshape(-1)).to(self.device)

            if self.normalize_advantage:
                b_advantages = (b_advantages - b_advantages.mean()) / (
                    b_advantages.std() + 1e-8
                )

            self.policy.train()
            logp_a, entropy, v = self.policy(b_obs, b_actions)

            pi_loss = -(b_advantages * logp_a).mean()
            value_loss = F.mse_loss(b_returns, v)
            entropy_loss = -entropy.mean()

            loss = pi_loss + self.vf_coef * value_loss + ent_coef * entropy_loss

            self.optimizer.zero_grad()
            loss.backward()
            nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
            self.optimizer.step()

            y_pred = values.reshape(-1)
            y_true = returns.reshape(-1)
            var_y = np.var(y_true).item()
            explained_var = (
                np.nan if var_y == 0 else 1 - np.var(y_true - y_pred).item() / var_y
            )

            end_time = perf_counter()
            rollout_steps = self.n_steps * self.env.num_envs
            self.tb_writer.add_scalar(
                "train/steps_per_second",
                (rollout_steps) / (end_time - start_time),
                timesteps_elapsed,
            )

            log_scalars(
                self.tb_writer,
                "losses",
                {
                    "loss": loss.item(),
                    "pi_loss": pi_loss.item(),
                    "v_loss": value_loss.item(),
                    "entropy_loss": entropy_loss.item(),
                    "explained_var": explained_var,
                },
                timesteps_elapsed,
            )

            if callback:
                if not callback.on_step(timesteps_elapsed=rollout_steps):
                    logging.info(
                        f"Callback terminated training at {timesteps_elapsed} timesteps"
                    )
                    break

        return self