File size: 5,362 Bytes
4b89739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"machine_shape": "hm",
"authorship_tag": "ABX9TyOGIH7rqgasim3Sz7b1rpoE",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"gpuClass": "standard",
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/sgoodfriend/rl-algo-impls/blob/main/benchmarks/colab_benchmark.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"# [sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) in Google Colaboratory\n",
"## Parameters\n",
"\n",
"\n",
"1. Wandb\n",
"\n"
],
"metadata": {
"id": "S-tXDWP8WTLc"
}
},
{
"cell_type": "code",
"source": [
"from getpass import getpass\n",
"import os\n",
"os.environ[\"WANDB_API_KEY\"] = getpass(\"Wandb API key to upload metrics, videos, and models: \")"
],
"metadata": {
"id": "1ZtdYgxWNGwZ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Setup\n",
"Clone [sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) "
],
"metadata": {
"id": "bsG35Io0hmKG"
}
},
{
"cell_type": "code",
"source": [
"%%capture\n",
"!git clone https://github.com/sgoodfriend/rl-algo-impls.git"
],
"metadata": {
"id": "k5ynTV25hdAf"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Installing the correct packages:\n",
"\n",
"While conda and poetry are generally used for package management, the mismatch in Python versions (3.10 in the project file vs 3.8 in Colab) makes using the package yml files difficult to use. For now, instead I'm going to specify the list of requirements manually below:"
],
"metadata": {
"id": "jKxGok-ElYQ7"
}
},
{
"cell_type": "code",
"source": [
"%%capture\n",
"!apt install python-opengl\n",
"!apt install ffmpeg\n",
"!apt install xvfb\n",
"!apt install swig"
],
"metadata": {
"id": "nn6EETTc2Ewf"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"%%capture\n",
"%cd /content/rl-algo-impls\n",
"python -m pip install ."
],
"metadata": {
"id": "AfZh9rH3yQii"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Run Once Per Runtime"
],
"metadata": {
"id": "4o5HOLjc4wq7"
}
},
{
"cell_type": "code",
"source": [
"import wandb\n",
"wandb.login()"
],
"metadata": {
"id": "PCXa5tdS2qFX"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Restart Session beteween runs"
],
"metadata": {
"id": "AZBZfSUV43JQ"
}
},
{
"cell_type": "code",
"source": [
"%%capture\n",
"from pyvirtualdisplay import Display\n",
"\n",
"virtual_display = Display(visible=0, size=(1400, 900))\n",
"virtual_display.start()"
],
"metadata": {
"id": "VzemeQJP2NO9"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"The below 5 bash scripts train agents on environments with 3 seeds each:\n",
"- colab_basic.sh and colab_pybullet.sh test on a set of basic gym environments and 4 PyBullet environments. Running both together will likely take about 18 hours. This is likely to run into runtime limits for free Colab and Colab Pro, but is fine for Colab Pro+.\n",
"- colab_carracing.sh only trains 3 seeds on CarRacing-v0, which takes almost 22 hours on Colab Pro+ on high-RAM, standard GPU.\n",
"- colab_atari1.sh and colab_atari2.sh likely need to be run separately because each takes about 19 hours on high-RAM, standard GPU."
],
"metadata": {
"id": "nSHfna0hLlO1"
}
},
{
"cell_type": "code",
"source": [
"%cd /content/rl-algo-impls\n",
"os.environ[\"BENCHMARK_MAX_PROCS\"] = str(1) # Can't reliably raise this to 2+, but would make it faster.\n",
"!./benchmarks/colab_basic.sh\n",
"!./benchmarks/colab_pybullet.sh\n",
"# !./benchmarks/colab_carracing.sh\n",
"# !./benchmarks/colab_atari1.sh\n",
"# !./benchmarks/colab_atari2.sh"
],
"metadata": {
"id": "07aHYFH1zfXa"
},
"execution_count": null,
"outputs": []
}
]
} |