File size: 10,334 Bytes
b9803e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import gym
import torch
import torch.nn as nn

from abc import ABC, abstractmethod
from gym.spaces import Box, Discrete
from torch.distributions import Categorical, Distribution, Normal
from typing import NamedTuple, Optional, Sequence, Type, TypeVar, Union

from rl_algo_impls.shared.module.module import mlp


class PiForward(NamedTuple):
    pi: Distribution
    logp_a: Optional[torch.Tensor]
    entropy: Optional[torch.Tensor]


class Actor(nn.Module, ABC):
    @abstractmethod
    def forward(self, obs: torch.Tensor, a: Optional[torch.Tensor] = None) -> PiForward:
        ...


class CategoricalActorHead(Actor):
    def __init__(
        self,
        act_dim: int,
        hidden_sizes: Sequence[int] = (32,),
        activation: Type[nn.Module] = nn.Tanh,
        init_layers_orthogonal: bool = True,
    ) -> None:
        super().__init__()
        layer_sizes = tuple(hidden_sizes) + (act_dim,)
        self._fc = mlp(
            layer_sizes,
            activation,
            init_layers_orthogonal=init_layers_orthogonal,
            final_layer_gain=0.01,
        )

    def forward(self, obs: torch.Tensor, a: Optional[torch.Tensor] = None) -> PiForward:
        logits = self._fc(obs)
        pi = Categorical(logits=logits)
        logp_a = None
        entropy = None
        if a is not None:
            logp_a = pi.log_prob(a)
            entropy = pi.entropy()
        return PiForward(pi, logp_a, entropy)


class GaussianDistribution(Normal):
    def log_prob(self, a: torch.Tensor) -> torch.Tensor:
        return super().log_prob(a).sum(axis=-1)

    def sample(self) -> torch.Tensor:
        return self.rsample()


class GaussianActorHead(Actor):
    def __init__(
        self,
        act_dim: int,
        hidden_sizes: Sequence[int] = (32,),
        activation: Type[nn.Module] = nn.Tanh,
        init_layers_orthogonal: bool = True,
        log_std_init: float = -0.5,
    ) -> None:
        super().__init__()
        layer_sizes = tuple(hidden_sizes) + (act_dim,)
        self.mu_net = mlp(
            layer_sizes,
            activation,
            init_layers_orthogonal=init_layers_orthogonal,
            final_layer_gain=0.01,
        )
        self.log_std = nn.Parameter(
            torch.ones(act_dim, dtype=torch.float32) * log_std_init
        )

    def _distribution(self, obs: torch.Tensor) -> Distribution:
        mu = self.mu_net(obs)
        std = torch.exp(self.log_std)
        return GaussianDistribution(mu, std)

    def forward(self, obs: torch.Tensor, a: Optional[torch.Tensor] = None) -> PiForward:
        pi = self._distribution(obs)
        logp_a = None
        entropy = None
        if a is not None:
            logp_a = pi.log_prob(a)
            entropy = pi.entropy()
        return PiForward(pi, logp_a, entropy)


class TanhBijector:
    def __init__(self, epsilon: float = 1e-6) -> None:
        self.epsilon = epsilon

    @staticmethod
    def forward(x: torch.Tensor) -> torch.Tensor:
        return torch.tanh(x)

    @staticmethod
    def inverse(y: torch.Tensor) -> torch.Tensor:
        eps = torch.finfo(y.dtype).eps
        clamped_y = y.clamp(min=-1.0 + eps, max=1.0 - eps)
        return torch.atanh(clamped_y)

    def log_prob_correction(self, x: torch.Tensor) -> torch.Tensor:
        return torch.log(1.0 - torch.tanh(x) ** 2 + self.epsilon)


def sum_independent_dims(tensor: torch.Tensor) -> torch.Tensor:
    if len(tensor.shape) > 1:
        return tensor.sum(dim=1)
    return tensor.sum()


class StateDependentNoiseDistribution(Normal):
    def __init__(
        self,
        loc,
        scale,
        latent_sde: torch.Tensor,
        exploration_mat: torch.Tensor,
        exploration_matrices: torch.Tensor,
        bijector: Optional[TanhBijector] = None,
        validate_args=None,
    ):
        super().__init__(loc, scale, validate_args)
        self.latent_sde = latent_sde
        self.exploration_mat = exploration_mat
        self.exploration_matrices = exploration_matrices
        self.bijector = bijector

    def log_prob(self, a: torch.Tensor) -> torch.Tensor:
        gaussian_a = self.bijector.inverse(a) if self.bijector else a
        log_prob = sum_independent_dims(super().log_prob(gaussian_a))
        if self.bijector:
            log_prob -= torch.sum(self.bijector.log_prob_correction(gaussian_a), dim=1)
        return log_prob

    def sample(self) -> torch.Tensor:
        noise = self._get_noise()
        actions = self.mean + noise
        return self.bijector.forward(actions) if self.bijector else actions

    def _get_noise(self) -> torch.Tensor:
        if len(self.latent_sde) == 1 or len(self.latent_sde) != len(
            self.exploration_matrices
        ):
            return torch.mm(self.latent_sde, self.exploration_mat)
        # (batch_size, n_features) -> (batch_size, 1, n_features)
        latent_sde = self.latent_sde.unsqueeze(dim=1)
        # (batch_size, 1, n_actions)
        noise = torch.bmm(latent_sde, self.exploration_matrices)
        return noise.squeeze(dim=1)

    @property
    def mode(self) -> torch.Tensor:
        mean = super().mode
        return self.bijector.forward(mean) if self.bijector else mean


StateDependentNoiseActorHeadSelf = TypeVar(
    "StateDependentNoiseActorHeadSelf", bound="StateDependentNoiseActorHead"
)


class StateDependentNoiseActorHead(Actor):
    def __init__(
        self,
        act_dim: int,
        hidden_sizes: Sequence[int] = (32,),
        activation: Type[nn.Module] = nn.Tanh,
        init_layers_orthogonal: bool = True,
        log_std_init: float = -0.5,
        full_std: bool = True,
        squash_output: bool = False,
        learn_std: bool = False,
    ) -> None:
        super().__init__()
        self.act_dim = act_dim
        layer_sizes = tuple(hidden_sizes) + (self.act_dim,)
        if len(layer_sizes) == 2:
            self.latent_net = nn.Identity()
        elif len(layer_sizes) > 2:
            self.latent_net = mlp(
                layer_sizes[:-1],
                activation,
                output_activation=activation,
                init_layers_orthogonal=init_layers_orthogonal,
            )
        else:
            raise ValueError("hidden_sizes must be of at least length 1")
        self.mu_net = mlp(
            layer_sizes[-2:],
            activation,
            init_layers_orthogonal=init_layers_orthogonal,
            final_layer_gain=0.01,
        )
        self.full_std = full_std
        std_dim = (hidden_sizes[-1], act_dim if self.full_std else 1)
        self.log_std = nn.Parameter(
            torch.ones(std_dim, dtype=torch.float32) * log_std_init
        )
        self.bijector = TanhBijector() if squash_output else None
        self.learn_std = learn_std
        self.device = None

        self.exploration_mat = None
        self.exploration_matrices = None
        self.sample_weights()

    def to(
        self: StateDependentNoiseActorHeadSelf,
        device: Optional[torch.device] = None,
        dtype: Optional[Union[torch.dtype, str]] = None,
        non_blocking: bool = False,
    ) -> StateDependentNoiseActorHeadSelf:
        super().to(device, dtype, non_blocking)
        self.device = device
        return self

    def _distribution(self, obs: torch.Tensor) -> Distribution:
        latent = self.latent_net(obs)
        mu = self.mu_net(latent)
        latent_sde = latent if self.learn_std else latent.detach()
        variance = torch.mm(latent_sde**2, self._get_std() ** 2)
        assert self.exploration_mat is not None
        assert self.exploration_matrices is not None
        return StateDependentNoiseDistribution(
            mu,
            torch.sqrt(variance + 1e-6),
            latent_sde,
            self.exploration_mat,
            self.exploration_matrices,
            self.bijector,
        )

    def _get_std(self) -> torch.Tensor:
        std = torch.exp(self.log_std)
        if self.full_std:
            return std
        ones = torch.ones(self.log_std.shape[0], self.act_dim)
        if self.device:
            ones = ones.to(self.device)
        return ones * std

    def forward(self, obs: torch.Tensor, a: Optional[torch.Tensor] = None) -> PiForward:
        pi = self._distribution(obs)
        logp_a = None
        entropy = None
        if a is not None:
            logp_a = pi.log_prob(a)
            entropy = -logp_a if self.bijector else sum_independent_dims(pi.entropy())
        return PiForward(pi, logp_a, entropy)

    def sample_weights(self, batch_size: int = 1) -> None:
        std = self._get_std()
        weights_dist = Normal(torch.zeros_like(std), std)
        # Reparametrization trick to pass gradients
        self.exploration_mat = weights_dist.rsample()
        self.exploration_matrices = weights_dist.rsample(torch.Size((batch_size,)))


def actor_head(
    action_space: gym.Space,
    hidden_sizes: Sequence[int],
    init_layers_orthogonal: bool,
    activation: Type[nn.Module],
    log_std_init: float = -0.5,
    use_sde: bool = False,
    full_std: bool = True,
    squash_output: bool = False,
) -> Actor:
    assert not use_sde or isinstance(
        action_space, Box
    ), "use_sde only valid if Box action_space"
    assert not squash_output or use_sde, "squash_output only valid if use_sde"
    if isinstance(action_space, Discrete):
        return CategoricalActorHead(
            action_space.n,
            hidden_sizes=hidden_sizes,
            activation=activation,
            init_layers_orthogonal=init_layers_orthogonal,
        )
    elif isinstance(action_space, Box):
        if use_sde:
            return StateDependentNoiseActorHead(
                action_space.shape[0],
                hidden_sizes=hidden_sizes,
                activation=activation,
                init_layers_orthogonal=init_layers_orthogonal,
                log_std_init=log_std_init,
                full_std=full_std,
                squash_output=squash_output,
            )
        else:
            return GaussianActorHead(
                action_space.shape[0],
                hidden_sizes=hidden_sizes,
                activation=activation,
                init_layers_orthogonal=init_layers_orthogonal,
                log_std_init=log_std_init,
            )
    else:
        raise ValueError(f"Unsupported action space: {action_space}")