File size: 1,561 Bytes
7c70ebe
 
 
 
 
 
05b94c0
7c70ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from typing import Optional, Type

import gym
import torch.nn as nn

from rl_algo_impls.shared.encoder.cnn import FlattenedCnnEncoder
from rl_algo_impls.shared.module.utils import layer_init


class NatureCnn(FlattenedCnnEncoder):
    """
    CNN from DQN Nature paper: Mnih, Volodymyr, et al.
    "Human-level control through deep reinforcement learning."
    Nature 518.7540 (2015): 529-533.
    """

    def __init__(
        self,
        obs_space: gym.Space,
        activation: Type[nn.Module],
        cnn_init_layers_orthogonal: Optional[bool],
        linear_init_layers_orthogonal: bool,
        cnn_flatten_dim: int,
        **kwargs,
    ) -> None:
        if cnn_init_layers_orthogonal is None:
            cnn_init_layers_orthogonal = True
        in_channels = obs_space.shape[0]  # type: ignore
        cnn = nn.Sequential(
            layer_init(
                nn.Conv2d(in_channels, 32, kernel_size=8, stride=4),
                cnn_init_layers_orthogonal,
            ),
            activation(),
            layer_init(
                nn.Conv2d(32, 64, kernel_size=4, stride=2),
                cnn_init_layers_orthogonal,
            ),
            activation(),
            layer_init(
                nn.Conv2d(64, 64, kernel_size=3, stride=1),
                cnn_init_layers_orthogonal,
            ),
            activation(),
        )
        super().__init__(
            obs_space,
            activation,
            linear_init_layers_orthogonal,
            cnn_flatten_dim,
            cnn,
            **kwargs,
        )