File size: 7,252 Bytes
5711016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from dataclasses import asdict, dataclass, field
from time import perf_counter
from torch.utils.tensorboard.writer import SummaryWriter
from typing import List, Optional, Sequence, NamedTuple, TypeVar

from shared.algorithm import Algorithm
from shared.callbacks.callback import Callback
from shared.gae import compute_advantage, compute_rtg_and_advantage
from shared.policy.on_policy import ActorCritic
from shared.schedule import schedule, update_learning_rate
from shared.stats import log_scalars
from shared.trajectory import Trajectory, TrajectoryAccumulator
from wrappers.vectorable_wrapper import (
    VecEnv,
    VecEnvObs,
    single_observation_space,
    single_action_space,
)

A2CSelf = TypeVar("A2CSelf", bound="A2C")


class A2C(Algorithm):
    def __init__(
        self,
        policy: ActorCritic,
        env: VecEnv,
        device: torch.device,
        tb_writer: SummaryWriter,
        learning_rate: float = 7e-4,
        learning_rate_decay: str = "none",
        n_steps: int = 5,
        gamma: float = 0.99,
        gae_lambda: float = 1.0,
        ent_coef: float = 0.0,
        ent_coef_decay: str = "none",
        vf_coef: float = 0.5,
        max_grad_norm: float = 0.5,
        rms_prop_eps: float = 1e-5,
        use_rms_prop: bool = True,
        sde_sample_freq: int = -1,
        normalize_advantage: bool = False,
    ) -> None:
        super().__init__(policy, env, device, tb_writer)
        self.policy = policy

        self.lr_schedule = schedule(learning_rate_decay, learning_rate)
        if use_rms_prop:
            self.optimizer = torch.optim.RMSprop(
                policy.parameters(), lr=learning_rate, eps=rms_prop_eps
            )
        else:
            self.optimizer = torch.optim.Adam(policy.parameters(), lr=learning_rate)

        self.n_steps = n_steps

        self.gamma = gamma
        self.gae_lambda = gae_lambda

        self.vf_coef = vf_coef
        self.ent_coef_schedule = schedule(ent_coef_decay, ent_coef)
        self.max_grad_norm = max_grad_norm

        self.sde_sample_freq = sde_sample_freq
        self.normalize_advantage = normalize_advantage

    def learn(
        self: A2CSelf, total_timesteps: int, callback: Optional[Callback] = None
    ) -> A2CSelf:
        epoch_dim = (self.n_steps, self.env.num_envs)
        step_dim = (self.env.num_envs,)
        obs_space = single_observation_space(self.env)
        act_space = single_action_space(self.env)

        obs = np.zeros(epoch_dim + obs_space.shape, dtype=obs_space.dtype)
        actions = np.zeros(epoch_dim + act_space.shape, dtype=act_space.dtype)
        rewards = np.zeros(epoch_dim, dtype=np.float32)
        episode_starts = np.zeros(epoch_dim, dtype=np.byte)
        values = np.zeros(epoch_dim, dtype=np.float32)
        logprobs = np.zeros(epoch_dim, dtype=np.float32)

        next_obs = self.env.reset()
        next_episode_starts = np.ones(step_dim, dtype=np.byte)

        timesteps_elapsed = 0
        while timesteps_elapsed < total_timesteps:
            start_time = perf_counter()

            progress = timesteps_elapsed / total_timesteps
            ent_coef = self.ent_coef_schedule(progress)
            learning_rate = self.lr_schedule(progress)
            update_learning_rate(self.optimizer, learning_rate)
            log_scalars(
                self.tb_writer,
                "charts",
                {
                    "ent_coef": ent_coef,
                    "learning_rate": learning_rate,
                },
                timesteps_elapsed,
            )

            self.policy.eval()
            self.policy.reset_noise()
            for s in range(self.n_steps):
                timesteps_elapsed += self.env.num_envs
                if self.sde_sample_freq > 0 and s > 0 and s % self.sde_sample_freq == 0:
                    self.policy.reset_noise()

                obs[s] = next_obs
                episode_starts[s] = next_episode_starts

                actions[s], values[s], logprobs[s], clamped_action = self.policy.step(
                    next_obs
                )
                next_obs, rewards[s], next_episode_starts, _ = self.env.step(
                    clamped_action
                )

            advantages = np.zeros(epoch_dim, dtype=np.float32)
            last_gae_lam = 0
            for t in reversed(range(self.n_steps)):
                if t == self.n_steps - 1:
                    next_nonterminal = 1.0 - next_episode_starts
                    next_value = self.policy.value(next_obs)
                else:
                    next_nonterminal = 1.0 - episode_starts[t + 1]
                    next_value = values[t + 1]
                delta = (
                    rewards[t] + self.gamma * next_value * next_nonterminal - values[t]
                )
                last_gae_lam = (
                    delta
                    + self.gamma * self.gae_lambda * next_nonterminal * last_gae_lam
                )
                advantages[t] = last_gae_lam
            returns = advantages + values

            b_obs = torch.tensor(obs.reshape((-1,) + obs_space.shape)).to(self.device)
            b_actions = torch.tensor(actions.reshape((-1,) + act_space.shape)).to(
                self.device
            )
            b_advantages = torch.tensor(advantages.reshape(-1)).to(self.device)
            b_returns = torch.tensor(returns.reshape(-1)).to(self.device)

            if self.normalize_advantage:
                b_advantages = (b_advantages - b_advantages.mean()) / (
                    b_advantages.std() + 1e-8
                )

            self.policy.train()
            logp_a, entropy, v = self.policy(b_obs, b_actions)

            pi_loss = -(b_advantages * logp_a).mean()
            value_loss = F.mse_loss(b_returns, v)
            entropy_loss = -entropy.mean()

            loss = pi_loss + self.vf_coef * value_loss + ent_coef * entropy_loss

            self.optimizer.zero_grad()
            loss.backward()
            nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
            self.optimizer.step()

            y_pred = values.reshape(-1)
            y_true = returns.reshape(-1)
            var_y = np.var(y_true).item()
            explained_var = (
                np.nan if var_y == 0 else 1 - np.var(y_true - y_pred).item() / var_y
            )

            end_time = perf_counter()
            rollout_steps = self.n_steps * self.env.num_envs
            self.tb_writer.add_scalar(
                "train/steps_per_second",
                (rollout_steps) / (end_time - start_time),
                timesteps_elapsed,
            )

            log_scalars(
                self.tb_writer,
                "losses",
                {
                    "loss": loss.item(),
                    "pi_loss": pi_loss.item(),
                    "v_loss": value_loss.item(),
                    "entropy_loss": entropy_loss.item(),
                    "explained_var": explained_var,
                },
                timesteps_elapsed,
            )

            if callback:
                callback.on_step(timesteps_elapsed=rollout_steps)

        return self