File size: 7,252 Bytes
5711016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import asdict, dataclass, field
from time import perf_counter
from torch.utils.tensorboard.writer import SummaryWriter
from typing import List, Optional, Sequence, NamedTuple, TypeVar
from shared.algorithm import Algorithm
from shared.callbacks.callback import Callback
from shared.gae import compute_advantage, compute_rtg_and_advantage
from shared.policy.on_policy import ActorCritic
from shared.schedule import schedule, update_learning_rate
from shared.stats import log_scalars
from shared.trajectory import Trajectory, TrajectoryAccumulator
from wrappers.vectorable_wrapper import (
VecEnv,
VecEnvObs,
single_observation_space,
single_action_space,
)
A2CSelf = TypeVar("A2CSelf", bound="A2C")
class A2C(Algorithm):
def __init__(
self,
policy: ActorCritic,
env: VecEnv,
device: torch.device,
tb_writer: SummaryWriter,
learning_rate: float = 7e-4,
learning_rate_decay: str = "none",
n_steps: int = 5,
gamma: float = 0.99,
gae_lambda: float = 1.0,
ent_coef: float = 0.0,
ent_coef_decay: str = "none",
vf_coef: float = 0.5,
max_grad_norm: float = 0.5,
rms_prop_eps: float = 1e-5,
use_rms_prop: bool = True,
sde_sample_freq: int = -1,
normalize_advantage: bool = False,
) -> None:
super().__init__(policy, env, device, tb_writer)
self.policy = policy
self.lr_schedule = schedule(learning_rate_decay, learning_rate)
if use_rms_prop:
self.optimizer = torch.optim.RMSprop(
policy.parameters(), lr=learning_rate, eps=rms_prop_eps
)
else:
self.optimizer = torch.optim.Adam(policy.parameters(), lr=learning_rate)
self.n_steps = n_steps
self.gamma = gamma
self.gae_lambda = gae_lambda
self.vf_coef = vf_coef
self.ent_coef_schedule = schedule(ent_coef_decay, ent_coef)
self.max_grad_norm = max_grad_norm
self.sde_sample_freq = sde_sample_freq
self.normalize_advantage = normalize_advantage
def learn(
self: A2CSelf, total_timesteps: int, callback: Optional[Callback] = None
) -> A2CSelf:
epoch_dim = (self.n_steps, self.env.num_envs)
step_dim = (self.env.num_envs,)
obs_space = single_observation_space(self.env)
act_space = single_action_space(self.env)
obs = np.zeros(epoch_dim + obs_space.shape, dtype=obs_space.dtype)
actions = np.zeros(epoch_dim + act_space.shape, dtype=act_space.dtype)
rewards = np.zeros(epoch_dim, dtype=np.float32)
episode_starts = np.zeros(epoch_dim, dtype=np.byte)
values = np.zeros(epoch_dim, dtype=np.float32)
logprobs = np.zeros(epoch_dim, dtype=np.float32)
next_obs = self.env.reset()
next_episode_starts = np.ones(step_dim, dtype=np.byte)
timesteps_elapsed = 0
while timesteps_elapsed < total_timesteps:
start_time = perf_counter()
progress = timesteps_elapsed / total_timesteps
ent_coef = self.ent_coef_schedule(progress)
learning_rate = self.lr_schedule(progress)
update_learning_rate(self.optimizer, learning_rate)
log_scalars(
self.tb_writer,
"charts",
{
"ent_coef": ent_coef,
"learning_rate": learning_rate,
},
timesteps_elapsed,
)
self.policy.eval()
self.policy.reset_noise()
for s in range(self.n_steps):
timesteps_elapsed += self.env.num_envs
if self.sde_sample_freq > 0 and s > 0 and s % self.sde_sample_freq == 0:
self.policy.reset_noise()
obs[s] = next_obs
episode_starts[s] = next_episode_starts
actions[s], values[s], logprobs[s], clamped_action = self.policy.step(
next_obs
)
next_obs, rewards[s], next_episode_starts, _ = self.env.step(
clamped_action
)
advantages = np.zeros(epoch_dim, dtype=np.float32)
last_gae_lam = 0
for t in reversed(range(self.n_steps)):
if t == self.n_steps - 1:
next_nonterminal = 1.0 - next_episode_starts
next_value = self.policy.value(next_obs)
else:
next_nonterminal = 1.0 - episode_starts[t + 1]
next_value = values[t + 1]
delta = (
rewards[t] + self.gamma * next_value * next_nonterminal - values[t]
)
last_gae_lam = (
delta
+ self.gamma * self.gae_lambda * next_nonterminal * last_gae_lam
)
advantages[t] = last_gae_lam
returns = advantages + values
b_obs = torch.tensor(obs.reshape((-1,) + obs_space.shape)).to(self.device)
b_actions = torch.tensor(actions.reshape((-1,) + act_space.shape)).to(
self.device
)
b_advantages = torch.tensor(advantages.reshape(-1)).to(self.device)
b_returns = torch.tensor(returns.reshape(-1)).to(self.device)
if self.normalize_advantage:
b_advantages = (b_advantages - b_advantages.mean()) / (
b_advantages.std() + 1e-8
)
self.policy.train()
logp_a, entropy, v = self.policy(b_obs, b_actions)
pi_loss = -(b_advantages * logp_a).mean()
value_loss = F.mse_loss(b_returns, v)
entropy_loss = -entropy.mean()
loss = pi_loss + self.vf_coef * value_loss + ent_coef * entropy_loss
self.optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.optimizer.step()
y_pred = values.reshape(-1)
y_true = returns.reshape(-1)
var_y = np.var(y_true).item()
explained_var = (
np.nan if var_y == 0 else 1 - np.var(y_true - y_pred).item() / var_y
)
end_time = perf_counter()
rollout_steps = self.n_steps * self.env.num_envs
self.tb_writer.add_scalar(
"train/steps_per_second",
(rollout_steps) / (end_time - start_time),
timesteps_elapsed,
)
log_scalars(
self.tb_writer,
"losses",
{
"loss": loss.item(),
"pi_loss": pi_loss.item(),
"v_loss": value_loss.item(),
"entropy_loss": entropy_loss.item(),
"explained_var": explained_var,
},
timesteps_elapsed,
)
if callback:
callback.on_step(timesteps_elapsed=rollout_steps)
return self
|