Chikuma_10.7B / README.md
sethuiyer's picture
Update README.md
59d4918 verified
|
raw
history blame
2.97 kB
metadata
license: apache-2.0
tags:
  - merge
  - mergekit
  - lazymergekit
language:
  - en
library_name: transformers
pipeline_tag: text-generation

Chikuma

NOTE: For experimental purposes

Chikuma

Chikuma is a 10.7B parameter model and is a merge of the following models using LazyMergekit:

The name "Chikuma" is inspired by the Chikuma River, the longest in Japan, known for its continuous flow and meandering path. This metaphorically represents the model's depth, fluidity, and adaptability in processing and understanding language.

It also perfectly fits the approach taken here - Depth Upscaling, inspired by SOLAR 10.7B.

Nous LLM Evaluation

Model AGIEval GPT4All TruthfulQA Bigbench Average
Chikuma_10.7B 42.41 73.41 56.69 43.5 54

More details can be found here

🧩 Configuration

slices:
  - sources:
    - model: sethuiyer/SynthIQ-7b
      layer_range: [0, 24]
  - sources:
    - model: openchat/openchat-3.5-0106
      layer_range: [8, 32]
merge_method: passthrough
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "sethuiyer/Chikuma_10.7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
A large language model is a type of artificial intelligence (AI) system that has been trained on a vast amount of text data to understand and generate human-like text.
These models are capable of tasks such as text generation, translation, summarization, and more. They have a vast vocabulary and contextual understanding of language, allowing them to generate coherent and relevant responses.
Examples of large language models include GPT-3, OpenAI's text-based model, and Google's BERT, which is designed for natural language understanding.