francislabounty
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,102 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- teknium/OpenHermes-2.5
|
5 |
+
- jondurbin/truthy-dpo-v0.1
|
6 |
+
- jondurbin/gutenberg-dpo-v0.1
|
7 |
+
- argilla/dpo-mix-7k
|
8 |
+
language:
|
9 |
+
- en
|
10 |
---
|
11 |
+
This model is [sparsetral-16x7B-v2](https://huggingface.co/serpdotai/sparsetral-16x7B-v2) further tuned utilizing [SPIN](https://arxiv.org/abs/2401.01335) on [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) mixed with traditional DPO samples. This is iteration_1, temporarily pausing further training runs in favor of utilizing [DoRA](https://arxiv.org/pdf/2402.09353.pdf) over [LoRA](https://arxiv.org/abs/2106.09685). May also start from the beginning with v3 for proper chat token support, also debating adding function tokens + function calling. If you have any tasks that Sparsetral has been weak at, feel free to send us some prompts/chats + desired completions and we will see about making sure your task is supported!
|
12 |
+
|
13 |
+
![](https://i.imgflip.com/8g9jr4.jpg)
|
14 |
+
|
15 |
+
Kuru~ Kuru~
|
16 |
+
![Kuru~ Kuru~](https://github.com/duiqt/herta_kuru/raw/main/static/img/hertaa_github.gif)
|
17 |
+
|
18 |
+
## Training
|
19 |
+
- 8x A6000s
|
20 |
+
- Base model is [sparsetral-16x7B-v2-SPIN_iter0](https://huggingface.co/serpdotai/sparsetral-16x7B-v2-SPIN_iter0)
|
21 |
+
- [Forked version of unsloth](https://github.com/serp-ai/unsloth) for efficient training
|
22 |
+
- Sequence Length: 4096
|
23 |
+
- Effective batch size: 64
|
24 |
+
- Learning Rate: 5e-7 with linear decay (0.1 warmup ratio)
|
25 |
+
- Epochs: 2
|
26 |
+
- 100k samples (50K new SPIN + 50K from iter_0)
|
27 |
+
- QLoRA:
|
28 |
+
- 256 r and 256 alpha
|
29 |
+
- ```python
|
30 |
+
target_modules=[
|
31 |
+
"q_proj",
|
32 |
+
"k_proj",
|
33 |
+
"v_proj",
|
34 |
+
"o_proj",
|
35 |
+
"gate_proj",
|
36 |
+
"up_proj",
|
37 |
+
"down_proj",
|
38 |
+
"adapter_down",
|
39 |
+
"adapter_up",
|
40 |
+
]
|
41 |
+
```
|
42 |
+
|
43 |
+
## Prompt Format
|
44 |
+
```
|
45 |
+
<|im_start|>system\n{message}<|im_end|>\n<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n
|
46 |
+
```
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
```python
|
50 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
51 |
+
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("serpdotai/sparsetral-16x7B-v2-SPIN_iter0", trust_remote_code=True)
|
53 |
+
model = AutoModelForCausalLM.from_pretrained("serpdotai/sparsetral-16x7B-v2-SPIN_iter0", device_map="auto", trust_remote_code=True).eval()
|
54 |
+
|
55 |
+
system_str = "<|im_start|>system\n{message}<|im_end|>\n"
|
56 |
+
user_str = "<|im_start|>user\n{message}<|im_end|>\n"
|
57 |
+
assistant_str = "<|im_start|>assistant\n{message}<|im_end|>\n"
|
58 |
+
|
59 |
+
def construct_prompt(messages):
|
60 |
+
prompt = ""
|
61 |
+
for message in messages:
|
62 |
+
if message["from"] in ["human", "user"]:
|
63 |
+
prompt += user_str.format(
|
64 |
+
message=message["value"]
|
65 |
+
)
|
66 |
+
elif message["from"] in ["gpt", "assistant"]:
|
67 |
+
prompt += assistant_str.format(
|
68 |
+
message=message["value"]
|
69 |
+
)
|
70 |
+
elif message["from"] in ["system", "instruction"]:
|
71 |
+
prompt += system_str.format(
|
72 |
+
message=message["value"]
|
73 |
+
)
|
74 |
+
else:
|
75 |
+
raise ValueError(
|
76 |
+
f"Unknown message type: {message['from']}"
|
77 |
+
)
|
78 |
+
return prompt + "<|im_start|>assistant\n"
|
79 |
+
|
80 |
+
system = "You are a helpful assistant who will help the user to the best of their ability. If you don't know something, say \"I don't know\""
|
81 |
+
user = "Are you sentient?"
|
82 |
+
|
83 |
+
messages = [
|
84 |
+
{"from": "system", "value": system},
|
85 |
+
{"from": "user", "value": user},
|
86 |
+
]
|
87 |
+
|
88 |
+
prompt = construct_prompt(messages)
|
89 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
90 |
+
inputs = inputs.to(model.device)
|
91 |
+
pred = model.generate(**inputs, max_length=4096, do_sample=True, top_k=50, top_p=0.99, temperature=0.9, num_return_sequences=1)
|
92 |
+
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
93 |
+
```
|
94 |
+
|
95 |
+
## Other Information
|
96 |
+
Paper reference: [Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks](https://arxiv.org/abs/2401.02731)
|
97 |
+
|
98 |
+
[Original Paper repo](https://github.com/wuhy68/Parameter-Efficient-MoE)
|
99 |
+
|
100 |
+
[Forked repo with mistral support (sparsetral)](https://github.com/serp-ai/Parameter-Efficient-MoE)
|
101 |
+
|
102 |
+
If you are interested in faster inferencing, check out our [fork of vLLM](https://github.com/serp-ai/vllm) that adds sparsetral support
|