francislabounty commited on
Commit
15b7356
·
verified ·
1 Parent(s): b105de7

Delete .ipynb_checkpoints

Browse files
.ipynb_checkpoints/config-checkpoint.json DELETED
@@ -1,40 +0,0 @@
1
- {
2
- "_name_or_path": "serpdotai/sparsetral-16x7B-v2-SPIN_iter1",
3
- "adapter_dim": 512,
4
- "adapter_dropout": 0.0,
5
- "architectures": [
6
- "modeling_sparsetral.MistralForCausalLM"
7
- ],
8
- "attention_dropout": 0.0,
9
- "auto_map": {
10
- "AutoConfig": "configuration_sparsetral.SparsetralConfig",
11
- "AutoModel": "modeling_sparsetral.MistralModel",
12
- "AutoModelForCausalLM": "modeling_sparsetral.MistralForCausalLM"
13
- },
14
- "bos_token_id": 1,
15
- "eos_token_id": 2,
16
- "hidden_act": "silu",
17
- "hidden_size": 4096,
18
- "initializer_range": 0.02,
19
- "intermediate_size": 14336,
20
- "max_position_embeddings": 32768,
21
- "model_type": "sparsetral",
22
- "moe_dtype": "bfloat16",
23
- "moe_scaling": 1,
24
- "num_attention_heads": 32,
25
- "num_experts": 16,
26
- "num_hidden_layers": 32,
27
- "num_key_value_heads": 8,
28
- "output_router_logits": false,
29
- "pretraining_tp": 1,
30
- "rms_norm_eps": 1e-05,
31
- "rope_theta": 1000000.0,
32
- "router_aux_loss_coef": 0.01,
33
- "sliding_window": null,
34
- "tie_word_embeddings": false,
35
- "topk": 4,
36
- "torch_dtype": "bfloat16",
37
- "transformers_version": "4.37.2",
38
- "use_cache": true,
39
- "vocab_size": 32000
40
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/configuration_sparsetral-checkpoint.py DELETED
@@ -1,157 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """ Sparsetral model configuration"""
16
-
17
- from transformers.configuration_utils import PretrainedConfig
18
- from transformers.utils import logging
19
-
20
-
21
- logger = logging.get_logger(__name__)
22
-
23
-
24
- class SparsetralConfig(PretrainedConfig):
25
- r"""
26
- This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
27
- Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
28
- with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
29
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
30
- [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
31
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
- documentation from [`PretrainedConfig`] for more information.
33
- Args:
34
- vocab_size (`int`, *optional*, defaults to 32000):
35
- Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
36
- `inputs_ids` passed when calling [`MistralModel`]
37
- hidden_size (`int`, *optional*, defaults to 4096):
38
- Dimension of the hidden representations.
39
- intermediate_size (`int`, *optional*, defaults to 14336):
40
- Dimension of the MLP representations.
41
- num_hidden_layers (`int`, *optional*, defaults to 32):
42
- Number of hidden layers in the Transformer encoder.
43
- num_attention_heads (`int`, *optional*, defaults to 32):
44
- Number of attention heads for each attention layer in the Transformer encoder.
45
- num_key_value_heads (`int`, *optional*, defaults to 8):
46
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
47
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
48
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
49
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
50
- by meanpooling all the original heads within that group. For more details checkout [this
51
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
52
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
53
- The non-linear activation function (function or string) in the decoder.
54
- max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
55
- The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
56
- allows sequence of up to 4096*32 tokens.
57
- initializer_range (`float`, *optional*, defaults to 0.02):
58
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
59
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
60
- The epsilon used by the rms normalization layers.
61
- use_cache (`bool`, *optional*, defaults to `True`):
62
- Whether or not the model should return the last key/values attentions (not used by all models). Only
63
- relevant if `config.is_decoder=True`.
64
- pad_token_id (`int`, *optional*):
65
- The id of the padding token.
66
- bos_token_id (`int`, *optional*, defaults to 1):
67
- The id of the "beginning-of-sequence" token.
68
- eos_token_id (`int`, *optional*, defaults to 2):
69
- The id of the "end-of-sequence" token.
70
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
71
- Whether the model's input and output word embeddings should be tied.
72
- rope_theta (`float`, *optional*, defaults to 10000.0):
73
- The base period of the RoPE embeddings.
74
- sliding_window (`int`, *optional*, defaults to 4096):
75
- Sliding window attention window size. If not specified, will default to `4096`.
76
- attention_dropout (`float`, *optional*, defaults to 0.0):
77
- The dropout ratio for the attention probabilities.
78
- ```python
79
- >>> from transformers import MistralModel, MistralConfig
80
- >>> # Initializing a Mistral 7B style configuration
81
- >>> configuration = MistralConfig()
82
- >>> # Initializing a model from the Mistral 7B style configuration
83
- >>> model = MistralModel(configuration)
84
- >>> # Accessing the model configuration
85
- >>> configuration = model.config
86
- ```"""
87
-
88
- model_type = "mistral"
89
- keys_to_ignore_at_inference = ["past_key_values"]
90
-
91
- def __init__(
92
- self,
93
- vocab_size=32000,
94
- hidden_size=4096,
95
- intermediate_size=14336,
96
- num_hidden_layers=32,
97
- num_attention_heads=32,
98
- num_key_value_heads=8,
99
- hidden_act="silu",
100
- max_position_embeddings=32768,
101
- initializer_range=0.02,
102
- rms_norm_eps=1e-6,
103
- use_cache=True,
104
- pad_token_id=None,
105
- bos_token_id=1,
106
- eos_token_id=2,
107
- tie_word_embeddings=False,
108
- rope_theta=10000.0,
109
- sliding_window=4096,
110
- attention_dropout=0.0,
111
- moe_dtype="bfloat16",
112
- moe_scaling=1.0,
113
- num_experts=16,
114
- topk=4,
115
- output_router_logits=False,
116
- adapter_dim=512,
117
- adapter_dropout=0.0,
118
- router_aux_loss_coef=0.01,
119
- **kwargs,
120
- ):
121
- self.vocab_size = vocab_size
122
- self.max_position_embeddings = max_position_embeddings
123
- self.hidden_size = hidden_size
124
- self.intermediate_size = intermediate_size
125
- self.num_hidden_layers = num_hidden_layers
126
- self.num_attention_heads = num_attention_heads
127
- self.sliding_window = sliding_window
128
-
129
- # for backward compatibility
130
- if num_key_value_heads is None:
131
- num_key_value_heads = num_attention_heads
132
-
133
- self.num_key_value_heads = num_key_value_heads
134
- self.hidden_act = hidden_act
135
- self.initializer_range = initializer_range
136
- self.rms_norm_eps = rms_norm_eps
137
- self.use_cache = use_cache
138
- self.rope_theta = rope_theta
139
- self.attention_dropout = attention_dropout
140
-
141
- self.moe_dtype = moe_dtype
142
- self.moe_scaling = moe_scaling
143
- self.num_experts = num_experts
144
- self.topk = topk
145
- self.output_router_logits = output_router_logits
146
-
147
- self.adapter_dim = adapter_dim
148
- self.adapter_dropout = adapter_dropout
149
- self.router_aux_loss_coef = router_aux_loss_coef
150
-
151
- super().__init__(
152
- pad_token_id=pad_token_id,
153
- bos_token_id=bos_token_id,
154
- eos_token_id=eos_token_id,
155
- tie_word_embeddings=tie_word_embeddings,
156
- **kwargs,
157
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/modeling_sparsetral-checkpoint.py DELETED
@@ -1,1622 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """ PyTorch Mistral model."""
21
- import inspect
22
- import math
23
- import warnings
24
- from dataclasses import dataclass
25
- from typing import List, Optional, Tuple, Union
26
-
27
- import torch
28
- import torch.nn.functional as F
29
- import torch.utils.checkpoint
30
- from torch import nn
31
- from torch.nn import CrossEntropyLoss
32
-
33
- from transformers.activations import ACT2FN
34
- from transformers.cache_utils import Cache, DynamicCache
35
- from transformers.modeling_attn_mask_utils import (
36
- _prepare_4d_causal_attention_mask,
37
- _prepare_4d_causal_attention_mask_for_sdpa,
38
- )
39
- from transformers.modeling_outputs import (
40
- BaseModelOutputWithPast,
41
- CausalLMOutputWithPast,
42
- SequenceClassifierOutputWithPast,
43
- )
44
- from transformers.modeling_utils import PreTrainedModel
45
- from transformers.utils import (
46
- add_start_docstrings,
47
- add_start_docstrings_to_model_forward,
48
- is_flash_attn_2_available,
49
- is_flash_attn_greater_or_equal_2_10,
50
- logging,
51
- replace_return_docstrings,
52
- ModelOutput,
53
- )
54
- from .configuration_sparsetral import SparsetralConfig
55
-
56
-
57
- if is_flash_attn_2_available():
58
- from flash_attn import flash_attn_func, flash_attn_varlen_func
59
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
60
-
61
- _flash_supports_window_size = "window_size" in list(
62
- inspect.signature(flash_attn_func).parameters
63
- )
64
-
65
-
66
- logger = logging.get_logger(__name__)
67
-
68
- _CONFIG_FOR_DOC = "SparsetralConfig"
69
-
70
-
71
- @dataclass
72
- class MoEModelOutputWithPast(ModelOutput):
73
- last_hidden_state: torch.FloatTensor = None
74
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
75
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
76
- attentions: Optional[Tuple[torch.FloatTensor]] = None
77
- router_logits: Optional[Tuple[torch.FloatTensor]] = None
78
-
79
-
80
- @dataclass
81
- class MoECausalLMOutputWithPast(ModelOutput):
82
- loss: Optional[torch.FloatTensor] = None
83
- aux_loss: Optional[torch.FloatTensor] = None
84
- logits: torch.FloatTensor = None
85
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
86
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
87
- attentions: Optional[Tuple[torch.FloatTensor]] = None
88
- router_logits: Optional[Tuple[torch.FloatTensor]] = None
89
-
90
-
91
- # Copied from transformers.models.llama.modeling_llama._get_unpad_data
92
- def _get_unpad_data(attention_mask):
93
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
94
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
95
- max_seqlen_in_batch = seqlens_in_batch.max().item()
96
- cu_seqlens = F.pad(
97
- torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
98
- )
99
- return (
100
- indices,
101
- cu_seqlens,
102
- max_seqlen_in_batch,
103
- )
104
-
105
-
106
- # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
107
- class MistralRMSNorm(nn.Module):
108
- def __init__(self, hidden_size, eps=1e-6):
109
- """
110
- MistralRMSNorm is equivalent to T5LayerNorm
111
- """
112
- super().__init__()
113
- self.weight = nn.Parameter(torch.ones(hidden_size))
114
- self.variance_epsilon = eps
115
-
116
- def forward(self, hidden_states):
117
- input_dtype = hidden_states.dtype
118
- hidden_states = hidden_states.to(torch.float32)
119
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
120
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
121
- return self.weight * hidden_states.to(input_dtype)
122
-
123
-
124
- # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
125
- class MistralRotaryEmbedding(nn.Module):
126
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
127
- super().__init__()
128
-
129
- self.dim = dim
130
- self.max_position_embeddings = max_position_embeddings
131
- self.base = base
132
- inv_freq = 1.0 / (
133
- self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
134
- )
135
- self.register_buffer("inv_freq", inv_freq, persistent=False)
136
-
137
- # Build here to make `torch.jit.trace` work.
138
- self._set_cos_sin_cache(
139
- seq_len=max_position_embeddings,
140
- device=self.inv_freq.device,
141
- dtype=torch.get_default_dtype(),
142
- )
143
-
144
- def _set_cos_sin_cache(self, seq_len, device, dtype):
145
- self.max_seq_len_cached = seq_len
146
- t = torch.arange(
147
- self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
148
- )
149
-
150
- freqs = torch.outer(t, self.inv_freq)
151
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
152
- emb = torch.cat((freqs, freqs), dim=-1)
153
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
154
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
155
-
156
- def forward(self, x, seq_len=None):
157
- # x: [bs, num_attention_heads, seq_len, head_size]
158
- if seq_len > self.max_seq_len_cached:
159
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
160
-
161
- return (
162
- self.cos_cached[:seq_len].to(dtype=x.dtype),
163
- self.sin_cached[:seq_len].to(dtype=x.dtype),
164
- )
165
-
166
-
167
- # Copied from transformers.models.llama.modeling_llama.rotate_half
168
- def rotate_half(x):
169
- """Rotates half the hidden dims of the input."""
170
- x1 = x[..., : x.shape[-1] // 2]
171
- x2 = x[..., x.shape[-1] // 2 :]
172
- return torch.cat((-x2, x1), dim=-1)
173
-
174
-
175
- # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
176
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
177
- """Applies Rotary Position Embedding to the query and key tensors.
178
- Args:
179
- q (`torch.Tensor`): The query tensor.
180
- k (`torch.Tensor`): The key tensor.
181
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
182
- sin (`torch.Tensor`): The sine part of the rotary embedding.
183
- position_ids (`torch.Tensor`):
184
- The position indices of the tokens corresponding to the query and key tensors. For example, this can be
185
- used to pass offsetted position ids when working with a KV-cache.
186
- unsqueeze_dim (`int`, *optional*, defaults to 1):
187
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
188
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
189
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
190
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
191
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
192
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
193
- Returns:
194
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
195
- """
196
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
197
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
198
- q_embed = (q * cos) + (rotate_half(q) * sin)
199
- k_embed = (k * cos) + (rotate_half(k) * sin)
200
- return q_embed, k_embed
201
-
202
-
203
- # Mistral MoE
204
- def load_balancing_loss_func(
205
- gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2
206
- ) -> float:
207
- r"""
208
- Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
209
- See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
210
- function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
211
- experts is too unbalanced.
212
- Args:
213
- gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
214
- Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts].
215
- num_experts (`int`, *optional*):
216
- Number of experts
217
- Returns:
218
- The auxiliary loss.
219
- """
220
- if gate_logits is None:
221
- return 0
222
-
223
- if isinstance(gate_logits, tuple):
224
- # cat along the layers?
225
- compute_device = gate_logits[0].device
226
- gate_logits = torch.cat(
227
- [gate.to(compute_device) for gate in gate_logits], dim=0
228
- )
229
-
230
- routing_weights, selected_experts = torch.topk(gate_logits, top_k, dim=-1)
231
- routing_weights = routing_weights.softmax(dim=-1)
232
-
233
- # cast the expert indices to int64, otherwise one-hot encoding will fail
234
- if selected_experts.dtype != torch.int64:
235
- selected_experts = selected_experts.to(torch.int64)
236
-
237
- if len(selected_experts.shape) == 2:
238
- selected_experts = selected_experts.unsqueeze(2)
239
-
240
- expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
241
-
242
- # For a given token, determine if it was routed to a given expert.
243
- expert_mask = torch.max(expert_mask, axis=-2).values
244
-
245
- # cast to float32 otherwise mean will fail
246
- expert_mask = expert_mask.to(torch.float32)
247
- tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
248
-
249
- router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1)
250
- return torch.mean(
251
- tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1)
252
- ) * (num_experts**2)
253
-
254
-
255
- class ParallelAdapterMLP(nn.Module):
256
- def __init__(self, config, adapter_dim, adapter_scaling):
257
- super().__init__()
258
- self.config = config
259
- self.intermediate_size = config.intermediate_size
260
- self.hidden_size = config.hidden_size
261
- self.adapter_down = nn.Linear(self.hidden_size, adapter_dim, bias=False)
262
- self.adapter_up = nn.Linear(adapter_dim, self.hidden_size, bias=False)
263
- self.adapter_act = nn.GELU()
264
-
265
- self.adapter_dropout = nn.Dropout(p=config.adapter_dropout)
266
- self.adapter_scaling = adapter_scaling
267
-
268
- def forward(self, x):
269
- x = self.adapter_dropout(x)
270
- x = self.adapter_scaling * self.adapter_up(
271
- self.adapter_act(self.adapter_down(x))
272
- )
273
- return x
274
-
275
-
276
- class SparsetralGateAdapter(nn.Module):
277
- def __init__(self, config: SparsetralConfig):
278
- super().__init__()
279
-
280
- self.intermediate_size = config.intermediate_size
281
- self.hidden_size = config.hidden_size
282
-
283
- # Step 1: Router
284
- self.num_experts = config.num_experts
285
- self.topk = config.topk
286
- self.router = nn.Linear(config.hidden_size, self.num_experts, bias=False)
287
- self.dtype = getattr(torch, config.moe_dtype)
288
-
289
- # Step 2: Get the experts
290
- self.expert_indicies = list(range(self.num_experts))
291
- self.experts = nn.ModuleList(
292
- [
293
- ParallelAdapterMLP(config, config.adapter_dim, config.moe_scaling)
294
- for _ in self.expert_indicies
295
- ]
296
- )
297
-
298
- def forward(self, input_hidden_states, output_hidden_states, router_hidden_states):
299
- orig_shape = output_hidden_states.shape
300
- input_hidden_states = input_hidden_states.view(
301
- -1, input_hidden_states.shape[-1]
302
- )
303
- output_hidden_states = output_hidden_states.view(
304
- -1, output_hidden_states.shape[-1]
305
- )
306
- router_hidden_states = router_hidden_states.view(
307
- -1, router_hidden_states.shape[-1]
308
- )
309
-
310
- router_logits = self.router(router_hidden_states)
311
-
312
- routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
313
- routing_weights, selected_experts = torch.topk(
314
- routing_weights, self.topk, dim=-1
315
- )
316
- routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
317
-
318
- final_hidden_states = None
319
- for expert_idx in self.expert_indicies:
320
- expert_layer = self.experts[expert_idx]
321
- expert_mask = selected_experts == expert_idx
322
- expert_weights = (routing_weights * expert_mask).sum(dim=-1, keepdim=True)
323
-
324
- current_hidden_states = (
325
- expert_layer(input_hidden_states)
326
- .add_(output_hidden_states)
327
- .mul_(expert_weights)
328
- )
329
- if final_hidden_states is None:
330
- final_hidden_states = current_hidden_states
331
- else:
332
- final_hidden_states.add_(current_hidden_states)
333
-
334
- return final_hidden_states.view(*orig_shape), router_logits
335
-
336
-
337
- class MistralMLP(nn.Module):
338
- def __init__(self, config):
339
- super().__init__()
340
- self.config = config
341
- self.hidden_size = config.hidden_size
342
- self.intermediate_size = config.intermediate_size
343
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
344
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
345
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
346
- self.act_fn = ACT2FN[config.hidden_act]
347
-
348
- self.moe_adapter = SparsetralGateAdapter(config)
349
-
350
- def forward(self, x):
351
- router_hidden_states = x
352
- up_proj = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
353
- down_proj = self.down_proj(up_proj)
354
- down_proj, router_logits = self.moe_adapter(
355
- down_proj, down_proj, router_hidden_states
356
- )
357
-
358
- return down_proj, router_logits
359
-
360
-
361
- # Copied from transformers.models.llama.modeling_llama.repeat_kv
362
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
363
- """
364
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
365
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
366
- """
367
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
368
- if n_rep == 1:
369
- return hidden_states
370
- hidden_states = hidden_states[:, :, None, :, :].expand(
371
- batch, num_key_value_heads, n_rep, slen, head_dim
372
- )
373
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
374
-
375
-
376
- class MistralAttention(nn.Module):
377
- """
378
- Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
379
- and "Generating Long Sequences with Sparse Transformers".
380
- """
381
-
382
- def __init__(self, config: SparsetralConfig, layer_idx: Optional[int] = None):
383
- super().__init__()
384
- self.config = config
385
- self.layer_idx = layer_idx
386
- if layer_idx is None:
387
- logger.warning_once(
388
- f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
389
- "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
390
- "when creating this class."
391
- )
392
-
393
- self.hidden_size = config.hidden_size
394
- self.num_heads = config.num_attention_heads
395
- self.head_dim = self.hidden_size // self.num_heads
396
- self.num_key_value_heads = config.num_key_value_heads
397
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
398
- self.max_position_embeddings = config.max_position_embeddings
399
- self.rope_theta = config.rope_theta
400
- self.is_causal = True
401
- self.attention_dropout = config.attention_dropout
402
-
403
- if (self.head_dim * self.num_heads) != self.hidden_size:
404
- raise ValueError(
405
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
406
- f" and `num_heads`: {self.num_heads})."
407
- )
408
- self.q_proj = nn.Linear(
409
- self.hidden_size, self.num_heads * self.head_dim, bias=False
410
- )
411
- self.k_proj = nn.Linear(
412
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
413
- )
414
- self.v_proj = nn.Linear(
415
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
416
- )
417
- self.o_proj = nn.Linear(
418
- self.num_heads * self.head_dim, self.hidden_size, bias=False
419
- )
420
-
421
- self.rotary_emb = MistralRotaryEmbedding(
422
- self.head_dim,
423
- max_position_embeddings=self.max_position_embeddings,
424
- base=self.rope_theta,
425
- )
426
-
427
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
428
- return (
429
- tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
430
- .transpose(1, 2)
431
- .contiguous()
432
- )
433
-
434
- def forward(
435
- self,
436
- hidden_states: torch.Tensor,
437
- attention_mask: Optional[torch.Tensor] = None,
438
- position_ids: Optional[torch.LongTensor] = None,
439
- past_key_value: Optional[Cache] = None,
440
- output_attentions: bool = False,
441
- use_cache: bool = False,
442
- **kwargs,
443
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
444
- if "padding_mask" in kwargs:
445
- warnings.warn(
446
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
447
- )
448
- bsz, q_len, _ = hidden_states.size()
449
-
450
- query_states = self.q_proj(hidden_states)
451
- key_states = self.k_proj(hidden_states)
452
- value_states = self.v_proj(hidden_states)
453
-
454
- query_states = query_states.view(
455
- bsz, q_len, self.num_heads, self.head_dim
456
- ).transpose(1, 2)
457
- key_states = key_states.view(
458
- bsz, q_len, self.num_key_value_heads, self.head_dim
459
- ).transpose(1, 2)
460
- value_states = value_states.view(
461
- bsz, q_len, self.num_key_value_heads, self.head_dim
462
- ).transpose(1, 2)
463
-
464
- kv_seq_len = key_states.shape[-2]
465
- if past_key_value is not None:
466
- if self.layer_idx is None:
467
- raise ValueError(
468
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
469
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
470
- "with a layer index."
471
- )
472
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
473
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
474
- query_states, key_states = apply_rotary_pos_emb(
475
- query_states, key_states, cos, sin, position_ids
476
- )
477
-
478
- if past_key_value is not None:
479
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
480
- key_states, value_states = past_key_value.update(
481
- key_states, value_states, self.layer_idx, cache_kwargs
482
- )
483
-
484
- # repeat k/v heads if n_kv_heads < n_heads
485
- key_states = repeat_kv(key_states, self.num_key_value_groups)
486
- value_states = repeat_kv(value_states, self.num_key_value_groups)
487
-
488
- attn_weights = torch.matmul(
489
- query_states, key_states.transpose(2, 3)
490
- ) / math.sqrt(self.head_dim)
491
-
492
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
493
- raise ValueError(
494
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
495
- f" {attn_weights.size()}"
496
- )
497
-
498
- if attention_mask is not None:
499
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
500
- raise ValueError(
501
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
502
- )
503
-
504
- attn_weights = attn_weights + attention_mask
505
-
506
- # upcast attention to fp32
507
- attn_weights = nn.functional.softmax(
508
- attn_weights, dim=-1, dtype=torch.float32
509
- ).to(query_states.dtype)
510
- attn_weights = nn.functional.dropout(
511
- attn_weights, p=self.attention_dropout, training=self.training
512
- )
513
- attn_output = torch.matmul(attn_weights, value_states)
514
-
515
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
516
- raise ValueError(
517
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
518
- f" {attn_output.size()}"
519
- )
520
-
521
- attn_output = attn_output.transpose(1, 2).contiguous()
522
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
523
-
524
- attn_output = self.o_proj(attn_output)
525
-
526
- if not output_attentions:
527
- attn_weights = None
528
-
529
- return attn_output, attn_weights, past_key_value
530
-
531
-
532
- class MistralFlashAttention2(MistralAttention):
533
- """
534
- Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
535
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
536
- flash attention and deal with padding tokens in case the input contains any of them.
537
- """
538
-
539
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
540
- def __init__(self, *args, **kwargs):
541
- super().__init__(*args, **kwargs)
542
-
543
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
544
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
545
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
546
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
547
-
548
- def forward(
549
- self,
550
- hidden_states: torch.Tensor,
551
- attention_mask: Optional[torch.Tensor] = None,
552
- position_ids: Optional[torch.LongTensor] = None,
553
- past_key_value: Optional[Cache] = None,
554
- output_attentions: bool = False,
555
- use_cache: bool = False,
556
- **kwargs,
557
- ):
558
- if "padding_mask" in kwargs:
559
- warnings.warn(
560
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
561
- )
562
-
563
- # overwrite attention_mask with padding_mask
564
- attention_mask = kwargs.pop("padding_mask")
565
- bsz, q_len, _ = hidden_states.size()
566
-
567
- query_states = self.q_proj(hidden_states)
568
- key_states = self.k_proj(hidden_states)
569
- value_states = self.v_proj(hidden_states)
570
-
571
- query_states = query_states.view(
572
- bsz, q_len, self.num_heads, self.head_dim
573
- ).transpose(1, 2)
574
- key_states = key_states.view(
575
- bsz, q_len, self.num_key_value_heads, self.head_dim
576
- ).transpose(1, 2)
577
- value_states = value_states.view(
578
- bsz, q_len, self.num_key_value_heads, self.head_dim
579
- ).transpose(1, 2)
580
-
581
- kv_seq_len = key_states.shape[-2]
582
- if past_key_value is not None:
583
- if self.layer_idx is None:
584
- raise ValueError(
585
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
586
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
587
- "with a layer index."
588
- )
589
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
590
-
591
- # Because the input can be padded, the absolute sequence length depends on the max position id.
592
- rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
593
- cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
594
-
595
- query_states, key_states = apply_rotary_pos_emb(
596
- query_states, key_states, cos, sin, position_ids
597
- )
598
-
599
- use_sliding_windows = (
600
- _flash_supports_window_size
601
- and getattr(self.config, "sliding_window", None) is not None
602
- and kv_seq_len > self.config.sliding_window
603
- )
604
-
605
- if not _flash_supports_window_size:
606
- logger.warning_once(
607
- "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
608
- " make sure to upgrade flash-attn library."
609
- )
610
-
611
- if past_key_value is not None:
612
- # Activate slicing cache only if the config has a value `sliding_windows` attribute
613
- cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
614
- if (
615
- getattr(self.config, "sliding_window", None) is not None
616
- and kv_seq_len > self.config.sliding_window
617
- and cache_has_contents
618
- ):
619
- slicing_tokens = 1 - self.config.sliding_window
620
-
621
- past_key = past_key_value[self.layer_idx][0]
622
- past_value = past_key_value[self.layer_idx][1]
623
-
624
- past_key = past_key[:, :, slicing_tokens:, :].contiguous()
625
- past_value = past_value[:, :, slicing_tokens:, :].contiguous()
626
-
627
- if past_key.shape[-2] != self.config.sliding_window - 1:
628
- raise ValueError(
629
- f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
630
- f" {past_key.shape}"
631
- )
632
-
633
- if attention_mask is not None:
634
- attention_mask = attention_mask[:, slicing_tokens:]
635
- attention_mask = torch.cat(
636
- [attention_mask, torch.ones_like(attention_mask[:, -1:])],
637
- dim=-1,
638
- )
639
-
640
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
641
- key_states, value_states = past_key_value.update(
642
- key_states, value_states, self.layer_idx, cache_kwargs
643
- )
644
-
645
- # repeat k/v heads if n_kv_heads < n_heads
646
- key_states = repeat_kv(key_states, self.num_key_value_groups)
647
- value_states = repeat_kv(value_states, self.num_key_value_groups)
648
- dropout_rate = 0.0 if not self.training else self.attention_dropout
649
-
650
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
651
- # therefore the input hidden states gets silently casted in float32. Hence, we need
652
- # cast them back in float16 just to be sure everything works as expected.
653
- input_dtype = query_states.dtype
654
- if input_dtype == torch.float32:
655
- if torch.is_autocast_enabled():
656
- target_dtype = torch.get_autocast_gpu_dtype()
657
- # Handle the case where the model is quantized
658
- elif hasattr(self.config, "_pre_quantization_dtype"):
659
- target_dtype = self.config._pre_quantization_dtype
660
- else:
661
- target_dtype = self.q_proj.weight.dtype
662
-
663
- logger.warning_once(
664
- f"The input hidden states seems to be silently casted in float32, this might be related to"
665
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
666
- f" {target_dtype}."
667
- )
668
-
669
- query_states = query_states.to(target_dtype)
670
- key_states = key_states.to(target_dtype)
671
- value_states = value_states.to(target_dtype)
672
-
673
- # Reashape to the expected shape for Flash Attention
674
- query_states = query_states.transpose(1, 2)
675
- key_states = key_states.transpose(1, 2)
676
- value_states = value_states.transpose(1, 2)
677
-
678
- attn_output = self._flash_attention_forward(
679
- query_states,
680
- key_states,
681
- value_states,
682
- attention_mask,
683
- q_len,
684
- dropout=dropout_rate,
685
- use_sliding_windows=use_sliding_windows,
686
- )
687
-
688
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
689
- attn_output = self.o_proj(attn_output)
690
-
691
- if not output_attentions:
692
- attn_weights = None
693
-
694
- return attn_output, attn_weights, past_key_value
695
-
696
- def _flash_attention_forward(
697
- self,
698
- query_states,
699
- key_states,
700
- value_states,
701
- attention_mask,
702
- query_length,
703
- dropout=0.0,
704
- softmax_scale=None,
705
- use_sliding_windows=False,
706
- ):
707
- """
708
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
709
- first unpad the input, then computes the attention scores and pad the final attention scores.
710
- Args:
711
- query_states (`torch.Tensor`):
712
- Input query states to be passed to Flash Attention API
713
- key_states (`torch.Tensor`):
714
- Input key states to be passed to Flash Attention API
715
- value_states (`torch.Tensor`):
716
- Input value states to be passed to Flash Attention API
717
- attention_mask (`torch.Tensor`):
718
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
719
- position of padding tokens and 1 for the position of non-padding tokens.
720
- dropout (`int`, *optional*):
721
- Attention dropout
722
- softmax_scale (`float`, *optional*):
723
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
724
- use_sliding_windows (`bool`, *optional*):
725
- Whether to activate sliding window attention.
726
- """
727
- if not self._flash_attn_uses_top_left_mask:
728
- causal = self.is_causal
729
- else:
730
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
731
- causal = self.is_causal and query_length != 1
732
-
733
- # Contains at least one padding token in the sequence
734
- if attention_mask is not None:
735
- batch_size = query_states.shape[0]
736
- (
737
- query_states,
738
- key_states,
739
- value_states,
740
- indices_q,
741
- cu_seq_lens,
742
- max_seq_lens,
743
- ) = self._upad_input(
744
- query_states, key_states, value_states, attention_mask, query_length
745
- )
746
-
747
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
748
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
749
-
750
- if not use_sliding_windows:
751
- attn_output_unpad = flash_attn_varlen_func(
752
- query_states,
753
- key_states,
754
- value_states,
755
- cu_seqlens_q=cu_seqlens_q,
756
- cu_seqlens_k=cu_seqlens_k,
757
- max_seqlen_q=max_seqlen_in_batch_q,
758
- max_seqlen_k=max_seqlen_in_batch_k,
759
- dropout_p=dropout,
760
- softmax_scale=softmax_scale,
761
- causal=causal,
762
- )
763
- else:
764
- attn_output_unpad = flash_attn_varlen_func(
765
- query_states,
766
- key_states,
767
- value_states,
768
- cu_seqlens_q=cu_seqlens_q,
769
- cu_seqlens_k=cu_seqlens_k,
770
- max_seqlen_q=max_seqlen_in_batch_q,
771
- max_seqlen_k=max_seqlen_in_batch_k,
772
- dropout_p=dropout,
773
- softmax_scale=softmax_scale,
774
- causal=causal,
775
- window_size=(
776
- self.config.sliding_window,
777
- self.config.sliding_window,
778
- ),
779
- )
780
-
781
- attn_output = pad_input(
782
- attn_output_unpad, indices_q, batch_size, query_length
783
- )
784
- else:
785
- if not use_sliding_windows:
786
- attn_output = flash_attn_func(
787
- query_states,
788
- key_states,
789
- value_states,
790
- dropout,
791
- softmax_scale=softmax_scale,
792
- causal=causal,
793
- )
794
- else:
795
- attn_output = flash_attn_func(
796
- query_states,
797
- key_states,
798
- value_states,
799
- dropout,
800
- softmax_scale=softmax_scale,
801
- causal=causal,
802
- window_size=(
803
- self.config.sliding_window,
804
- self.config.sliding_window,
805
- ),
806
- )
807
-
808
- return attn_output
809
-
810
- def _upad_input(
811
- self, query_layer, key_layer, value_layer, attention_mask, query_length
812
- ):
813
- batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
814
-
815
- # On the first iteration we need to properly re-create the padding mask
816
- # by slicing it on the proper place
817
- if kv_seq_len != attention_mask.shape[-1]:
818
- attention_mask_num_tokens = attention_mask.shape[-1]
819
- attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
820
-
821
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
822
-
823
- key_layer = index_first_axis(
824
- key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
825
- )
826
- value_layer = index_first_axis(
827
- value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
828
- )
829
-
830
- if query_length == kv_seq_len:
831
- query_layer = index_first_axis(
832
- query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim),
833
- indices_k,
834
- )
835
- cu_seqlens_q = cu_seqlens_k
836
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
837
- indices_q = indices_k
838
- elif query_length == 1:
839
- max_seqlen_in_batch_q = 1
840
- cu_seqlens_q = torch.arange(
841
- batch_size + 1, dtype=torch.int32, device=query_layer.device
842
- ) # There is a memcpy here, that is very bad.
843
- indices_q = cu_seqlens_q[:-1]
844
- query_layer = query_layer.squeeze(1)
845
- else:
846
- # The -q_len: slice assumes left padding.
847
- attention_mask = attention_mask[:, -query_length:]
848
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
849
- query_layer, attention_mask
850
- )
851
-
852
- return (
853
- query_layer,
854
- key_layer,
855
- value_layer,
856
- indices_q,
857
- (cu_seqlens_q, cu_seqlens_k),
858
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
859
- )
860
-
861
-
862
- # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral
863
- class MistralSdpaAttention(MistralAttention):
864
- """
865
- Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
866
- `MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
867
- SDPA API.
868
- """
869
-
870
- # Adapted from MistralAttention.forward
871
- def forward(
872
- self,
873
- hidden_states: torch.Tensor,
874
- attention_mask: Optional[torch.Tensor] = None,
875
- position_ids: Optional[torch.LongTensor] = None,
876
- past_key_value: Optional[Cache] = None,
877
- output_attentions: bool = False,
878
- use_cache: bool = False,
879
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
880
- if output_attentions:
881
- # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
882
- logger.warning_once(
883
- "MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
884
- 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
885
- )
886
- return super().forward(
887
- hidden_states=hidden_states,
888
- attention_mask=attention_mask,
889
- position_ids=position_ids,
890
- past_key_value=past_key_value,
891
- output_attentions=output_attentions,
892
- use_cache=use_cache,
893
- )
894
-
895
- bsz, q_len, _ = hidden_states.size()
896
-
897
- query_states = self.q_proj(hidden_states)
898
- key_states = self.k_proj(hidden_states)
899
- value_states = self.v_proj(hidden_states)
900
-
901
- query_states = query_states.view(
902
- bsz, q_len, self.num_heads, self.head_dim
903
- ).transpose(1, 2)
904
- key_states = key_states.view(
905
- bsz, q_len, self.num_key_value_heads, self.head_dim
906
- ).transpose(1, 2)
907
- value_states = value_states.view(
908
- bsz, q_len, self.num_key_value_heads, self.head_dim
909
- ).transpose(1, 2)
910
-
911
- kv_seq_len = key_states.shape[-2]
912
- if past_key_value is not None:
913
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
914
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
915
-
916
- query_states, key_states = apply_rotary_pos_emb(
917
- query_states, key_states, cos, sin, position_ids
918
- )
919
-
920
- if past_key_value is not None:
921
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
922
- key_states, value_states = past_key_value.update(
923
- key_states, value_states, self.layer_idx, cache_kwargs
924
- )
925
-
926
- key_states = repeat_kv(key_states, self.num_key_value_groups)
927
- value_states = repeat_kv(value_states, self.num_key_value_groups)
928
-
929
- if attention_mask is not None:
930
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
931
- raise ValueError(
932
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
933
- )
934
-
935
- # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
936
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
937
- if query_states.device.type == "cuda" and attention_mask is not None:
938
- query_states = query_states.contiguous()
939
- key_states = key_states.contiguous()
940
- value_states = value_states.contiguous()
941
-
942
- attn_output = torch.nn.functional.scaled_dot_product_attention(
943
- query_states,
944
- key_states,
945
- value_states,
946
- attn_mask=attention_mask,
947
- dropout_p=self.attention_dropout if self.training else 0.0,
948
- # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
949
- is_causal=self.is_causal and attention_mask is None and q_len > 1,
950
- )
951
-
952
- attn_output = attn_output.transpose(1, 2).contiguous()
953
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
954
-
955
- attn_output = self.o_proj(attn_output)
956
-
957
- return attn_output, None, past_key_value
958
-
959
-
960
- MISTRAL_ATTENTION_CLASSES = {
961
- "eager": MistralAttention,
962
- "flash_attention_2": MistralFlashAttention2,
963
- "sdpa": MistralSdpaAttention,
964
- }
965
-
966
-
967
- class MistralDecoderLayer(nn.Module):
968
- def __init__(self, config: SparsetralConfig, layer_idx: int):
969
- super().__init__()
970
- self.config = config
971
- self.hidden_size = config.hidden_size
972
-
973
- self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](
974
- config, layer_idx
975
- )
976
-
977
- self.mlp = MistralMLP(config)
978
- self.input_layernorm = MistralRMSNorm(
979
- config.hidden_size, eps=config.rms_norm_eps
980
- )
981
- self.post_attention_layernorm = MistralRMSNorm(
982
- config.hidden_size, eps=config.rms_norm_eps
983
- )
984
-
985
- def forward(
986
- self,
987
- hidden_states: torch.Tensor,
988
- attention_mask: Optional[torch.Tensor] = None,
989
- position_ids: Optional[torch.LongTensor] = None,
990
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
991
- output_attentions: Optional[bool] = False,
992
- output_router_logits: Optional[bool] = False,
993
- use_cache: Optional[bool] = False,
994
- **kwargs,
995
- ) -> Tuple[
996
- torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
997
- ]:
998
- if "padding_mask" in kwargs:
999
- warnings.warn(
1000
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1001
- )
1002
- """
1003
- Args:
1004
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1005
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
1006
- `(batch, sequence_length)` where padding elements are indicated by 0.
1007
- output_attentions (`bool`, *optional*):
1008
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1009
- returned tensors for more detail.
1010
- use_cache (`bool`, *optional*):
1011
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1012
- (see `past_key_values`).
1013
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1014
- """
1015
-
1016
- residual = hidden_states
1017
-
1018
- hidden_states = self.input_layernorm(hidden_states)
1019
-
1020
- # Self Attention
1021
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
1022
- hidden_states=hidden_states,
1023
- attention_mask=attention_mask,
1024
- position_ids=position_ids,
1025
- past_key_value=past_key_value,
1026
- output_attentions=output_attentions,
1027
- use_cache=use_cache,
1028
- )
1029
- hidden_states = residual + hidden_states
1030
-
1031
- # Fully Connected
1032
- residual = hidden_states
1033
- hidden_states = self.post_attention_layernorm(hidden_states)
1034
- hidden_states, router_logits = self.mlp(hidden_states)
1035
- hidden_states = residual + hidden_states
1036
-
1037
- outputs = (hidden_states,)
1038
-
1039
- if output_attentions:
1040
- outputs += (self_attn_weights,)
1041
-
1042
- if use_cache:
1043
- outputs += (present_key_value,)
1044
-
1045
- if output_router_logits:
1046
- outputs += (router_logits,)
1047
-
1048
- return outputs
1049
-
1050
-
1051
- MISTRAL_START_DOCSTRING = r"""
1052
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1053
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1054
- etc.)
1055
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1056
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1057
- and behavior.
1058
- Parameters:
1059
- config ([`SparsetralConfig`]):
1060
- Model configuration class with all the parameters of the model. Initializing with a config file does not
1061
- load the weights associated with the model, only the configuration. Check out the
1062
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1063
- """
1064
-
1065
-
1066
- @add_start_docstrings(
1067
- "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
1068
- MISTRAL_START_DOCSTRING,
1069
- )
1070
- class MistralPreTrainedModel(PreTrainedModel):
1071
- config_class = SparsetralConfig
1072
- base_model_prefix = "model"
1073
- supports_gradient_checkpointing = True
1074
- _no_split_modules = ["MistralDecoderLayer"]
1075
- _skip_keys_device_placement = "past_key_values"
1076
- _supports_flash_attn_2 = True
1077
- _supports_sdpa = True
1078
- _supports_cache_class = True
1079
-
1080
- def _init_weights(self, module):
1081
- std = self.config.initializer_range
1082
- if isinstance(module, nn.Linear):
1083
- module.weight.data.normal_(mean=0.0, std=std)
1084
- if module.bias is not None:
1085
- module.bias.data.zero_()
1086
- elif isinstance(module, nn.Embedding):
1087
- module.weight.data.normal_(mean=0.0, std=std)
1088
- if module.padding_idx is not None:
1089
- module.weight.data[module.padding_idx].zero_()
1090
-
1091
- def _set_gradient_checkpointing(self, module, value=False):
1092
- if isinstance(module, MistralModel):
1093
- module.gradient_checkpointing = value
1094
-
1095
-
1096
- MISTRAL_INPUTS_DOCSTRING = r"""
1097
- Args:
1098
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1099
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1100
- it.
1101
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1102
- [`PreTrainedTokenizer.__call__`] for details.
1103
- [What are input IDs?](../glossary#input-ids)
1104
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1105
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1106
- - 1 for tokens that are **not masked**,
1107
- - 0 for tokens that are **masked**.
1108
- [What are attention masks?](../glossary#attention-mask)
1109
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1110
- [`PreTrainedTokenizer.__call__`] for details.
1111
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
1112
- `past_key_values`).
1113
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1114
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1115
- information on the default strategy.
1116
- - 1 indicates the head is **not masked**,
1117
- - 0 indicates the head is **masked**.
1118
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1119
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1120
- config.n_positions - 1]`.
1121
- [What are position IDs?](../glossary#position-ids)
1122
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1123
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1124
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1125
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1126
- Two formats are allowed:
1127
- - a [`~cache_utils.Cache`] instance;
1128
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1129
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1130
- cache format.
1131
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1132
- legacy cache format will be returned.
1133
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1134
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1135
- of shape `(batch_size, sequence_length)`.
1136
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1137
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1138
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1139
- model's internal embedding lookup matrix.
1140
- use_cache (`bool`, *optional*):
1141
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1142
- `past_key_values`).
1143
- output_attentions (`bool`, *optional*):
1144
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1145
- tensors for more detail.
1146
- output_hidden_states (`bool`, *optional*):
1147
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1148
- more detail.
1149
- return_dict (`bool`, *optional*):
1150
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1151
- """
1152
-
1153
-
1154
- @add_start_docstrings(
1155
- "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
1156
- MISTRAL_START_DOCSTRING,
1157
- )
1158
- class MistralModel(MistralPreTrainedModel):
1159
- """
1160
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
1161
- Args:
1162
- config: MistralConfig
1163
- """
1164
-
1165
- def __init__(self, config: SparsetralConfig):
1166
- super().__init__(config)
1167
- self.padding_idx = config.pad_token_id
1168
- self.vocab_size = config.vocab_size
1169
-
1170
- self.embed_tokens = nn.Embedding(
1171
- config.vocab_size, config.hidden_size, self.padding_idx
1172
- )
1173
- self.layers = nn.ModuleList(
1174
- [
1175
- MistralDecoderLayer(config, layer_idx)
1176
- for layer_idx in range(config.num_hidden_layers)
1177
- ]
1178
- )
1179
- self._attn_implementation = config._attn_implementation
1180
- self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1181
-
1182
- self.gradient_checkpointing = False
1183
- # Initialize weights and apply final processing
1184
- self.post_init()
1185
-
1186
- def get_input_embeddings(self):
1187
- return self.embed_tokens
1188
-
1189
- def set_input_embeddings(self, value):
1190
- self.embed_tokens = value
1191
-
1192
- @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1193
- def forward(
1194
- self,
1195
- input_ids: torch.LongTensor = None,
1196
- attention_mask: Optional[torch.Tensor] = None,
1197
- position_ids: Optional[torch.LongTensor] = None,
1198
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1199
- inputs_embeds: Optional[torch.FloatTensor] = None,
1200
- use_cache: Optional[bool] = None,
1201
- output_attentions: Optional[bool] = None,
1202
- output_hidden_states: Optional[bool] = None,
1203
- output_router_logits: Optional[bool] = None,
1204
- return_dict: Optional[bool] = None,
1205
- ) -> Union[Tuple, MoEModelOutputWithPast]:
1206
- output_attentions = (
1207
- output_attentions
1208
- if output_attentions is not None
1209
- else self.config.output_attentions
1210
- )
1211
- output_hidden_states = (
1212
- output_hidden_states
1213
- if output_hidden_states is not None
1214
- else self.config.output_hidden_states
1215
- )
1216
- output_router_logits = (
1217
- output_router_logits
1218
- if output_router_logits is not None
1219
- else self.config.output_router_logits
1220
- )
1221
- use_cache = use_cache if use_cache is not None else self.config.use_cache
1222
-
1223
- return_dict = (
1224
- return_dict if return_dict is not None else self.config.use_return_dict
1225
- )
1226
-
1227
- # retrieve input_ids and inputs_embeds
1228
- if input_ids is not None and inputs_embeds is not None:
1229
- raise ValueError(
1230
- "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
1231
- )
1232
- elif input_ids is not None:
1233
- batch_size, seq_length = input_ids.shape
1234
- elif inputs_embeds is not None:
1235
- batch_size, seq_length, _ = inputs_embeds.shape
1236
- else:
1237
- raise ValueError(
1238
- "You have to specify either decoder_input_ids or decoder_inputs_embeds"
1239
- )
1240
-
1241
- if self.gradient_checkpointing and self.training:
1242
- if use_cache:
1243
- logger.warning_once(
1244
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1245
- )
1246
- use_cache = False
1247
-
1248
- seq_length_with_past = seq_length
1249
- past_key_values_length = 0
1250
-
1251
- if past_key_values is not None:
1252
- past_key_values_length = past_key_values[0][0].shape[2]
1253
- seq_length_with_past = seq_length_with_past + past_key_values_length
1254
-
1255
- if use_cache:
1256
- use_legacy_cache = not isinstance(past_key_values, Cache)
1257
- if use_legacy_cache:
1258
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1259
- past_key_values_length = past_key_values.get_usable_length(seq_length)
1260
-
1261
- if position_ids is None:
1262
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1263
- position_ids = torch.arange(
1264
- past_key_values_length,
1265
- seq_length + past_key_values_length,
1266
- dtype=torch.long,
1267
- device=device,
1268
- )
1269
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1270
- else:
1271
- position_ids = position_ids.view(-1, seq_length).long()
1272
-
1273
- if inputs_embeds is None:
1274
- inputs_embeds = self.embed_tokens(input_ids)
1275
-
1276
- if (
1277
- attention_mask is not None
1278
- and self._attn_implementation == "flash_attention_2"
1279
- and use_cache
1280
- ):
1281
- is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1282
- if is_padding_right:
1283
- raise ValueError(
1284
- "You are attempting to perform batched generation with padding_side='right'"
1285
- " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
1286
- " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1287
- )
1288
-
1289
- if self._attn_implementation == "flash_attention_2":
1290
- # 2d mask is passed through the layers
1291
- attention_mask = (
1292
- attention_mask
1293
- if (attention_mask is not None and 0 in attention_mask)
1294
- else None
1295
- )
1296
- elif self._attn_implementation == "sdpa" and not output_attentions:
1297
- # output_attentions=True can not be supported when using SDPA, and we fall back on
1298
- # the manual implementation that requires a 4D causal mask in all cases.
1299
- attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1300
- attention_mask,
1301
- (batch_size, seq_length),
1302
- inputs_embeds,
1303
- past_key_values_length,
1304
- )
1305
- else:
1306
- # 4d mask is passed through the layers
1307
- attention_mask = _prepare_4d_causal_attention_mask(
1308
- attention_mask,
1309
- (batch_size, seq_length),
1310
- inputs_embeds,
1311
- past_key_values_length,
1312
- sliding_window=self.config.sliding_window,
1313
- )
1314
-
1315
- hidden_states = inputs_embeds
1316
-
1317
- # decoder layers
1318
- all_hidden_states = () if output_hidden_states else None
1319
- all_self_attns = () if output_attentions else None
1320
- all_router_logits = () if output_router_logits else None
1321
- next_decoder_cache = None
1322
-
1323
- for decoder_layer in self.layers:
1324
- if output_hidden_states:
1325
- all_hidden_states += (hidden_states,)
1326
-
1327
- if self.gradient_checkpointing and self.training:
1328
-
1329
- def create_custom_forward(module):
1330
- def custom_forward(*inputs):
1331
- # None for past_key_value
1332
- return module(
1333
- *inputs, output_attentions, output_router_logits, None
1334
- )
1335
-
1336
- return custom_forward
1337
-
1338
- layer_outputs = torch.utils.checkpoint.checkpoint(
1339
- create_custom_forward(decoder_layer),
1340
- hidden_states,
1341
- attention_mask,
1342
- position_ids,
1343
- None,
1344
- )
1345
- else:
1346
- layer_outputs = decoder_layer(
1347
- hidden_states,
1348
- attention_mask=attention_mask,
1349
- position_ids=position_ids,
1350
- past_key_value=past_key_values,
1351
- output_attentions=output_attentions,
1352
- output_router_logits=output_router_logits,
1353
- use_cache=use_cache,
1354
- )
1355
-
1356
- hidden_states = layer_outputs[0]
1357
-
1358
- if use_cache:
1359
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1360
-
1361
- if output_attentions:
1362
- all_self_attns += (layer_outputs[1],)
1363
-
1364
- if output_router_logits:
1365
- all_router_logits += (layer_outputs[-1],)
1366
-
1367
- hidden_states = self.norm(hidden_states)
1368
-
1369
- # add hidden states from the last decoder layer
1370
- if output_hidden_states:
1371
- all_hidden_states += (hidden_states,)
1372
-
1373
- next_cache = None
1374
- if use_cache:
1375
- next_cache = (
1376
- next_decoder_cache.to_legacy_cache()
1377
- if use_legacy_cache
1378
- else next_decoder_cache
1379
- )
1380
-
1381
- if not return_dict:
1382
- return tuple(
1383
- v
1384
- for v in [
1385
- hidden_states,
1386
- next_cache,
1387
- all_hidden_states,
1388
- all_self_attns,
1389
- all_router_logits,
1390
- ]
1391
- if v is not None
1392
- )
1393
- return MoEModelOutputWithPast(
1394
- last_hidden_state=hidden_states,
1395
- past_key_values=next_cache,
1396
- hidden_states=all_hidden_states,
1397
- attentions=all_self_attns,
1398
- router_logits=all_router_logits,
1399
- )
1400
-
1401
-
1402
- class MistralForCausalLM(MistralPreTrainedModel):
1403
- _tied_weights_keys = ["lm_head.weight"]
1404
-
1405
- def __init__(self, config):
1406
- super().__init__(config)
1407
- self.config = config
1408
- self.model = MistralModel(config)
1409
- self.vocab_size = config.vocab_size
1410
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1411
-
1412
- # Initialize weights and apply final processing
1413
- self.post_init()
1414
-
1415
- def get_input_embeddings(self):
1416
- return self.model.embed_tokens
1417
-
1418
- def set_input_embeddings(self, value):
1419
- self.model.embed_tokens = value
1420
-
1421
- def get_output_embeddings(self):
1422
- return self.lm_head
1423
-
1424
- def set_output_embeddings(self, new_embeddings):
1425
- self.lm_head = new_embeddings
1426
-
1427
- def set_decoder(self, decoder):
1428
- self.model = decoder
1429
-
1430
- def get_decoder(self):
1431
- return self.model
1432
-
1433
- @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1434
- @replace_return_docstrings(
1435
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1436
- )
1437
- def forward(
1438
- self,
1439
- input_ids: torch.LongTensor = None,
1440
- attention_mask: Optional[torch.Tensor] = None,
1441
- position_ids: Optional[torch.LongTensor] = None,
1442
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1443
- inputs_embeds: Optional[torch.FloatTensor] = None,
1444
- labels: Optional[torch.LongTensor] = None,
1445
- use_cache: Optional[bool] = None,
1446
- output_attentions: Optional[bool] = None,
1447
- output_hidden_states: Optional[bool] = None,
1448
- output_router_logits: Optional[bool] = None,
1449
- return_dict: Optional[bool] = None,
1450
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1451
- r"""
1452
- Args:
1453
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1454
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1455
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1456
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1457
- Returns:
1458
- Example:
1459
- ```python
1460
- >>> from transformers import AutoTokenizer, MistralForCausalLM
1461
- >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
1462
- >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
1463
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
1464
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1465
- >>> # Generate
1466
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1467
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1468
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1469
- ```"""
1470
-
1471
- output_attentions = (
1472
- output_attentions
1473
- if output_attentions is not None
1474
- else self.config.output_attentions
1475
- )
1476
- output_hidden_states = (
1477
- output_hidden_states
1478
- if output_hidden_states is not None
1479
- else self.config.output_hidden_states
1480
- )
1481
- output_router_logits = (
1482
- output_router_logits
1483
- if output_router_logits is not None
1484
- else self.config.output_router_logits
1485
- )
1486
- return_dict = (
1487
- return_dict if return_dict is not None else self.config.use_return_dict
1488
- )
1489
-
1490
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1491
- outputs = self.model(
1492
- input_ids=input_ids,
1493
- attention_mask=attention_mask,
1494
- position_ids=position_ids,
1495
- past_key_values=past_key_values,
1496
- inputs_embeds=inputs_embeds,
1497
- use_cache=use_cache,
1498
- output_attentions=output_attentions,
1499
- output_hidden_states=output_hidden_states,
1500
- output_router_logits=output_router_logits,
1501
- return_dict=return_dict,
1502
- )
1503
-
1504
- hidden_states = outputs[0]
1505
- logits = self.lm_head(hidden_states)
1506
- logits = logits.float()
1507
-
1508
- loss = None
1509
- if labels is not None:
1510
- # Shift so that tokens < n predict n
1511
- shift_logits = logits[..., :-1, :].contiguous()
1512
- shift_labels = labels[..., 1:].contiguous()
1513
- # Flatten the tokens
1514
- loss_fct = CrossEntropyLoss()
1515
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1516
- shift_labels = shift_labels.view(-1)
1517
- # Enable model parallelism
1518
- shift_labels = shift_labels.to(shift_logits.device)
1519
- loss = loss_fct(shift_logits, shift_labels)
1520
-
1521
- aux_loss = None
1522
- if output_router_logits:
1523
- aux_loss = load_balancing_loss_func(
1524
- outputs.router_logits if return_dict else outputs[-1],
1525
- self.config.num_experts,
1526
- self.config.topk,
1527
- )
1528
- if labels is not None:
1529
- loss += self.config.router_aux_loss_coef * aux_loss
1530
-
1531
- if not return_dict:
1532
- output = (logits,) + outputs[1:]
1533
- if output_router_logits:
1534
- output = (aux_loss,) + output
1535
- return (loss,) + output if loss is not None else output
1536
-
1537
- return MoECausalLMOutputWithPast(
1538
- loss=loss,
1539
- aux_loss=aux_loss,
1540
- logits=logits,
1541
- past_key_values=outputs.past_key_values,
1542
- hidden_states=outputs.hidden_states,
1543
- attentions=outputs.attentions,
1544
- router_logits=outputs.router_logits,
1545
- )
1546
-
1547
- def prepare_inputs_for_generation(
1548
- self,
1549
- input_ids,
1550
- past_key_values=None,
1551
- attention_mask=None,
1552
- inputs_embeds=None,
1553
- **kwargs,
1554
- ):
1555
- # Omit tokens covered by past_key_values
1556
- if past_key_values is not None:
1557
- if isinstance(past_key_values, Cache):
1558
- cache_length = past_key_values.get_seq_length()
1559
- past_length = past_key_values.seen_tokens
1560
- max_cache_length = past_key_values.get_max_length()
1561
- else:
1562
- cache_length = past_length = past_key_values[0][0].shape[2]
1563
- max_cache_length = None
1564
-
1565
- # Keep only the unprocessed tokens:
1566
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1567
- # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1568
- # input)
1569
- if (
1570
- attention_mask is not None
1571
- and attention_mask.shape[1] > input_ids.shape[1]
1572
- ):
1573
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1574
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1575
- # input_ids based on the past_length.
1576
- elif past_length < input_ids.shape[1]:
1577
- input_ids = input_ids[:, past_length:]
1578
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1579
-
1580
- # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1581
- if (
1582
- max_cache_length is not None
1583
- and attention_mask is not None
1584
- and cache_length + input_ids.shape[1] > max_cache_length
1585
- ):
1586
- attention_mask = attention_mask[:, -max_cache_length:]
1587
-
1588
- position_ids = kwargs.get("position_ids", None)
1589
- if attention_mask is not None and position_ids is None:
1590
- # create position_ids on the fly for batch generation
1591
- position_ids = attention_mask.long().cumsum(-1) - 1
1592
- position_ids.masked_fill_(attention_mask == 0, 1)
1593
- if past_key_values:
1594
- position_ids = position_ids[:, -1].unsqueeze(-1)
1595
-
1596
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1597
- if inputs_embeds is not None and past_key_values is None:
1598
- model_inputs = {"inputs_embeds": inputs_embeds}
1599
- else:
1600
- model_inputs = {"input_ids": input_ids}
1601
-
1602
- model_inputs.update(
1603
- {
1604
- "position_ids": position_ids,
1605
- "past_key_values": past_key_values,
1606
- "use_cache": kwargs.get("use_cache"),
1607
- "attention_mask": attention_mask,
1608
- }
1609
- )
1610
- return model_inputs
1611
-
1612
- @staticmethod
1613
- def _reorder_cache(past_key_values, beam_idx):
1614
- reordered_past = ()
1615
- for layer_past in past_key_values:
1616
- reordered_past += (
1617
- tuple(
1618
- past_state.index_select(0, beam_idx.to(past_state.device))
1619
- for past_state in layer_past
1620
- ),
1621
- )
1622
- return reordered_past