File size: 2,815 Bytes
a21af78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
base_model: monologg/koelectra-small-v3-discriminator
tags:
- generated_from_trainer
model-index:
- name: find_tune_bert_output
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# find_tune_bert_output
This model is a fine-tuned version of [monologg/koelectra-small-v3-discriminator](https://huggingface.co/monologg/koelectra-small-v3-discriminator) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2110
- Overall Precision: 0.8468
- Overall Recall: 0.8561
- Overall F1: 0.8514
- Overall Accuracy: 0.9405
- Loc F1: 0.9090
- Org F1: 0.7685
- Per F1: 0.8477
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:------:|
| 0.2146 | 0.8 | 1000 | 0.2903 | 0.7632 | 0.8340 | 0.7970 | 0.9175 | 0.8729 | 0.6812 | 0.7966 |
| 0.2538 | 1.6 | 2000 | 0.2374 | 0.8183 | 0.8290 | 0.8236 | 0.9299 | 0.8940 | 0.7187 | 0.8178 |
| 0.2192 | 2.4 | 3000 | 0.2265 | 0.8246 | 0.8437 | 0.8340 | 0.9340 | 0.8956 | 0.7403 | 0.8322 |
| 0.1967 | 3.2 | 4000 | 0.2206 | 0.8261 | 0.8529 | 0.8393 | 0.9354 | 0.9047 | 0.7499 | 0.8290 |
| 0.1814 | 4.0 | 5000 | 0.2169 | 0.8371 | 0.8538 | 0.8453 | 0.9379 | 0.9057 | 0.7605 | 0.8388 |
| 0.1661 | 4.8 | 6000 | 0.2169 | 0.8403 | 0.8490 | 0.8446 | 0.9382 | 0.9050 | 0.7583 | 0.8378 |
| 0.1577 | 5.6 | 7000 | 0.2116 | 0.8413 | 0.8604 | 0.8507 | 0.9401 | 0.9088 | 0.7670 | 0.8472 |
| 0.1544 | 6.4 | 8000 | 0.2110 | 0.8468 | 0.8561 | 0.8514 | 0.9405 | 0.9090 | 0.7685 | 0.8477 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|